Lemma 66.17.7. Let $S$ be a scheme. Let $h : Z \to X$ be an immersion of algebraic spaces over $S$. Assume either $Z \to X$ is quasi-compact or $Z$ is reduced. Let $\overline{Z} \subset X$ be the scheme theoretic image of $h$. Then the morphism $Z \to \overline{Z}$ is an open immersion which identifies $Z$ with a scheme theoretically dense open subspace of $\overline{Z}$. Moreover, $Z$ is topologically dense in $\overline{Z}$.

**Proof.**
In both cases the formation of $\overline{Z}$ commutes with étale localization, see Lemmas 66.16.3 and 66.16.4. Hence this lemma follows from the case of schemes, see Morphisms, Lemma 29.7.7.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (2)

Comment #1682 by Matthieu Romagny on

Comment #1731 by Johan on