Definition 33.35.7. Let $k$ be a field. Let $n \geq 0$. Let $\mathcal{F}$ be a coherent sheaf on $\mathbf{P}^ n_ k$. We say $\mathcal{F}$ is *$m$-regular* if

for $i = 1, \ldots , n$.

Here is the definition.

Definition 33.35.7. Let $k$ be a field. Let $n \geq 0$. Let $\mathcal{F}$ be a coherent sheaf on $\mathbf{P}^ n_ k$. We say $\mathcal{F}$ is *$m$-regular* if

\[ H^ i(\mathbf{P}^ n_ k, \mathcal{F}(m - i)) = 0 \]

for $i = 1, \ldots , n$.

Note that $\mathcal{F} = \mathcal{O}(d)$ is $m$-regular if and only if $d \geq -m$. This follows from the computation of cohomology groups in Cohomology of Schemes, Equation (30.8.1.1). Namely, we see that $H^ n(\mathbf{P}^ n_ k, \mathcal{O}(d)) = 0$ if and only if $d \geq -n$.

Lemma 33.35.8. Let $k'/k$ be an extension of fields. Let $n \geq 0$. Let $\mathcal{F}$ be a coherent sheaf on $\mathbf{P}^ n_ k$. Let $\mathcal{F}'$ be the pullback of $\mathcal{F}$ to $\mathbf{P}^ n_{k'}$. Then $\mathcal{F}$ is $m$-regular if and only if $\mathcal{F}'$ is $m$-regular.

**Proof.**
This is true because

\[ H^ i(\mathbf{P}^ n_{k'}, \mathcal{F}') = H^ i(\mathbf{P}^ n_ k, \mathcal{F}) \otimes _ k k' \]

by flat base change, see Cohomology of Schemes, Lemma 30.5.2. $\square$

Lemma 33.35.9. In the situation of Lemma 33.35.3, if $\mathcal{F}$ is $m$-regular, then $\mathcal{G}$ is $m$-regular on $H \cong \mathbf{P}^{n - 1}_ k$.

**Proof.**
Recall that $H^ i(\mathbf{P}^ n_ k, i_*\mathcal{G}) = H^ i(H, \mathcal{G})$ by Cohomology of Schemes, Lemma 30.2.4. Hence we see that for $i \geq 1$ we get

\[ H^ i(\mathbf{P}^ n_ k, \mathcal{F}(m - i)) \to H^ i(H, \mathcal{G}(m - i)) \to H^{i + 1}(\mathbf{P}^ n_ k, \mathcal{F}(m - 1 - i)) \]

by Remark 33.35.5. The lemma follows. $\square$

Lemma 33.35.10. Let $k$ be a field. Let $n \geq 0$. Let $\mathcal{F}$ be a coherent sheaf on $\mathbf{P}^ n_ k$. If $\mathcal{F}$ is $m$-regular, then $\mathcal{F}$ is $(m + 1)$-regular.

**Proof.**
We prove this by induction on $n$. If $n = 0$ every sheaf is $m$-regular for all $m$ and there is nothing to prove. By Lemma 33.35.8 we may replace $k$ by an infinite overfield and assume $k$ is infinite. Thus we may apply Lemma 33.35.3. By Lemma 33.35.9 we know that $\mathcal{G}$ is $m$-regular. By induction on $n$ we see that $\mathcal{G}$ is $(m + 1)$-regular. Considering the long exact cohomology sequence associated to the sequence

\[ 0 \to \mathcal{F}(m - i) \to \mathcal{F}(m + 1 - i) \to i_*\mathcal{G}(m + 1 - i) \to 0 \]

as in Remark 33.35.5 the reader easily deduces for $i \geq 1$ the vanishing of $H^ i(\mathbf{P}^ n_ k, \mathcal{F}(m + 1 - i))$ from the (known) vanishing of $H^ i(\mathbf{P}^ n_ k, \mathcal{F}(m - i))$ and $H^ i(\mathbf{P}^ n_ k, \mathcal{G}(m + 1 - i))$. $\square$

Lemma 33.35.11. Let $k$ be a field. Let $n \geq 0$. Let $\mathcal{F}$ be a coherent sheaf on $\mathbf{P}^ n_ k$. If $\mathcal{F}$ is $m$-regular, then the multiplication map

\[ H^0(\mathbf{P}^ n_ k, \mathcal{F}(m)) \otimes _ k H^0(\mathbf{P}^ n_ k, \mathcal{O}(1)) \longrightarrow H^0(\mathbf{P}^ n_ k, \mathcal{F}(m + 1)) \]

is surjective.

**Proof.**
Let $k'/k$ be an extension of fields. Let $\mathcal{F}'$ be as in Lemma 33.35.8. By Cohomology of Schemes, Lemma 30.5.2 the base change of the linear map of the lemma to $k'$ is the same linear map for the sheaf $\mathcal{F}'$. Since $k \to k'$ is faithfully flat it suffices to prove the lemma over $k'$, i.e., we may assume $k$ is infinite.

Assume $k$ is infinite. We prove the lemma by induction on $n$. The case $n = 0$ is trivial as $\mathcal{O}(1) \cong \mathcal{O}$ is generated by $T_0$. For $n > 0$ apply Lemma 33.35.3 and tensor the sequence by $\mathcal{O}(m + 1)$ to get

\[ 0 \to \mathcal{F}(m) \xrightarrow {s} \mathcal{F}(m + 1) \to i_*\mathcal{G}(m + 1) \to 0 \]

see Remark 33.35.5. Let $t \in H^0(\mathbf{P}^ n_ k, \mathcal{F}(m + 1))$. By induction the image $\overline{t} \in H^0(H, \mathcal{G}(m + 1))$ is the image of $\sum g_ i \otimes \overline{s}_ i$ with $\overline{s}_ i \in \Gamma (H, \mathcal{O}(1))$ and $g_ i \in H^0(H, \mathcal{G}(m))$. Since $\mathcal{F}$ is $m$-regular we have $H^1(\mathbf{P}^ n_ k, \mathcal{F}(m - 1)) = 0$, hence long exact cohomology sequence associated to the short exact sequence

\[ 0 \to \mathcal{F}(m - 1) \xrightarrow {s} \mathcal{F}(m) \to i_*\mathcal{G}(m) \to 0 \]

shows we can lift $g_ i$ to $f_ i \in H^0(\mathbf{P}^ n_ k, \mathcal{F}(m))$. We can also lift $\overline{s}_ i$ to $s_ i \in H^0(\mathbf{P}^ n_ k, \mathcal{O}(1))$ (see proof of Lemma 33.35.2 for example). After subtracting the image of $\sum f_ i \otimes s_ i$ from $t$ we see that we may assume $\overline{t} = 0$. But this exactly means that $t$ is the image of $f \otimes s$ for some $f \in H^0(\mathbf{P}^ n_ k, \mathcal{F}(m))$ as desired. $\square$

Lemma 33.35.12. Let $k$ be a field. Let $n \geq 0$. Let $\mathcal{F}$ be a coherent sheaf on $\mathbf{P}^ n_ k$. If $\mathcal{F}$ is $m$-regular, then $\mathcal{F}(m)$ is globally generated.

**Proof.**
For all $d \gg 0$ the sheaf $\mathcal{F}(d)$ is globally generated. This follows for example from the first part of Cohomology of Schemes, Lemma 30.14.1. Pick $d \geq m$ such that $\mathcal{F}(d)$ is globally generated. Choose a basis $f_1, \ldots , f_ r \in H^0(\mathbf{P}^ n_ k, \mathcal{F})$. By Lemma 33.35.11 every element $f \in H^0(\mathbf{P}^ n_ k, \mathcal{F}(d))$ can be written as $f = \sum P_ if_ i$ for some $P_ i \in k[T_0, \ldots , T_ n]$ homogeneous of degree $d - m$. Since the sections $f$ generate $\mathcal{F}(d)$ it follows that the sections $f_ i$ generate $\mathcal{F}(m)$.
$\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: