Lemma 69.20.4. Let $A$ be a Noetherian ring. Let $B$ be a finitely generated graded $A$-algebra. Let $f : X \to \mathop{\mathrm{Spec}}(A)$ be a proper morphism of algebraic spaces. Set $\mathcal{B} = f^*\widetilde B$. Let $\mathcal{F}$ be a quasi-coherent graded $\mathcal{B}$-module of finite type. For every $p \geq 0$ the graded $B$-module $H^ p(X, \mathcal{F})$ is a finite $B$-module.

Proof. To prove this we consider the fibre product diagram

$\xymatrix{ X' = \mathop{\mathrm{Spec}}(B) \times _{\mathop{\mathrm{Spec}}(A)} X \ar[r]_-\pi \ar[d]_{f'} & X \ar[d]^ f \\ \mathop{\mathrm{Spec}}(B) \ar[r] & \mathop{\mathrm{Spec}}(A) }$

Note that $f'$ is a proper morphism, see Morphisms of Spaces, Lemma 67.40.3. Also, $B$ is a finitely generated $A$-algebra, and hence Noetherian (Algebra, Lemma 10.31.1). This implies that $X'$ is a Noetherian algebraic space (Morphisms of Spaces, Lemma 67.28.6). Note that $X'$ is the relative spectrum of the quasi-coherent $\mathcal{O}_ X$-algebra $\mathcal{B}$ by Morphisms of Spaces, Lemma 67.20.7. Since $\mathcal{F}$ is a quasi-coherent $\mathcal{B}$-module we see that there is a unique quasi-coherent $\mathcal{O}_{X'}$-module $\mathcal{F}'$ such that $\pi _*\mathcal{F}' = \mathcal{F}$, see Morphisms of Spaces, Lemma 67.20.10. Since $\mathcal{F}$ is finite type as a $\mathcal{B}$-module we conclude that $\mathcal{F}'$ is a finite type $\mathcal{O}_{X'}$-module (details omitted). In other words, $\mathcal{F}'$ is a coherent $\mathcal{O}_{X'}$-module (Lemma 69.12.2). Since the morphism $\pi : X' \to X$ is affine we have

$H^ p(X, \mathcal{F}) = H^ p(X', \mathcal{F}')$

by Lemma 69.8.2 and Cohomology on Sites, Lemma 21.14.6. Thus the lemma follows from Lemma 69.20.3. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).