Lemma 66.20.10. Let $S$ be a scheme. Let $f : Y \to X$ be an affine morphism of algebraic spaces over $S$. Let $\mathcal{A} = f_*\mathcal{O}_ Y$. The functor $\mathcal{F} \mapsto f_*\mathcal{F}$ induces an equivalence of categories

Moreover, an $\mathcal{A}$-module is quasi-coherent as an $\mathcal{O}_ X$-module if and only if it is quasi-coherent as an $\mathcal{A}$-module.

## Comments (0)