Remark 67.20.9. Let S be a scheme. Let f : Y \to X be a quasi-compact and quasi-separated morphism of algebraic spaces over S. Then f has a canonical factorization
This makes sense because f_*\mathcal{O}_ Y is quasi-coherent by Lemma 67.11.2. The morphism Y \to \underline{\mathop{\mathrm{Spec}}}_ X(f_*\mathcal{O}_ Y) comes from the canonical \mathcal{O}_ Y-algebra map f^*f_*\mathcal{O}_ Y \to \mathcal{O}_ Y which corresponds to a canonical morphism Y \to Y \times _ X \underline{\mathop{\mathrm{Spec}}}_ X(f_*\mathcal{O}_ Y) over Y (see Lemma 67.20.7) whence a factorization of f as above.
Comments (0)