Remark 66.20.9. Let $S$ be a scheme. Let $f : Y \to X$ be a quasi-compact and quasi-separated morphism of algebraic spaces over $S$. Then $f$ has a canonical factorization

This makes sense because $f_*\mathcal{O}_ Y$ is quasi-coherent by Lemma 66.11.2. The morphism $Y \to \underline{\mathop{\mathrm{Spec}}}_ X(f_*\mathcal{O}_ Y)$ comes from the canonical $\mathcal{O}_ Y$-algebra map $f^*f_*\mathcal{O}_ Y \to \mathcal{O}_ Y$ which corresponds to a canonical morphism $Y \to Y \times _ X \underline{\mathop{\mathrm{Spec}}}_ X(f_*\mathcal{O}_ Y)$ over $Y$ (see Lemma 66.20.7) whence a factorization of $f$ as above.

## Comments (0)