Lemma 36.3.9. Let $X$ be a scheme.

1. For objects $K, L$ of $D_\mathit{QCoh}(\mathcal{O}_ X)$ the derived tensor product $K \otimes ^\mathbf {L}_{\mathcal{O}_ X} L$ is in $D_\mathit{QCoh}(\mathcal{O}_ X)$.

2. If $X = \mathop{\mathrm{Spec}}(A)$ is affine then

$\widetilde{M^\bullet } \otimes _{\mathcal{O}_ X}^\mathbf {L} \widetilde{K^\bullet } = \widetilde{M^\bullet \otimes _ A^\mathbf {L} K^\bullet }$

for any pair of complexes of $A$-modules $K^\bullet$, $M^\bullet$.

Proof. The equality of (2) follows immediately from Lemma 36.3.6 and the construction of the derived tensor product. To see (1) let $K, L$ be objects of $D_\mathit{QCoh}(\mathcal{O}_ X)$. To check that $K \otimes ^\mathbf {L} L$ is in $D_\mathit{QCoh}(\mathcal{O}_ X)$ we may work locally on $X$, hence we may assume $X = \mathop{\mathrm{Spec}}(A)$ is affine. By Lemma 36.3.5 we may represent $K$ and $L$ by complexes of $A$-modules. Then part (2) implies the result. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).