Lemma 20.46.11. Let (X, \mathcal{O}_ X) be a ringed space. Let \mathcal{E}^\bullet , \mathcal{F}^\bullet be complexes of \mathcal{O}_ X-modules with
\mathcal{F}^ n = 0 for n \ll 0,
\mathcal{E}^ n = 0 for n \gg 0, and
\mathcal{E}^ n isomorphic to a direct summand of a finite free \mathcal{O}_ X-module.
Then the internal hom R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{E}^\bullet , \mathcal{F}^\bullet ) is represented by the complex \mathcal{H}^\bullet with terms
\mathcal{H}^ n = \bigoplus \nolimits _{n = p + q} \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{E}^{-q}, \mathcal{F}^ p)
and differential as described in Section 20.42.
Proof.
Choose a quasi-isomorphism \mathcal{F}^\bullet \to \mathcal{I}^\bullet where \mathcal{I}^\bullet is a bounded below complex of injectives. Note that \mathcal{I}^\bullet is K-injective (Derived Categories, Lemma 13.31.4). Hence the construction in Section 20.42 shows that R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{E}^\bullet , \mathcal{F}^\bullet ) is represented by the complex (\mathcal{H}')^\bullet with terms
(\mathcal{H}')^ n = \prod \nolimits _{n = p + q} \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{E}^{-q}, \mathcal{I}^ p) = \bigoplus \nolimits _{n = p + q} \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{E}^{-q}, \mathcal{I}^ p)
(equality because there are only finitely many nonzero terms). Note that \mathcal{H}^\bullet is the total complex associated to the double complex with terms \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{E}^{-q}, \mathcal{F}^ p) and similarly for (\mathcal{H}')^\bullet . The natural map (\mathcal{H}')^\bullet \to \mathcal{H}^\bullet comes from a map of double complexes. Thus to show this map is a quasi-isomorphism, we may use the spectral sequence of a double complex (Homology, Lemma 12.25.3)
{}'E_1^{p, q} = H^ p(\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{E}^{-q}, \mathcal{F}^\bullet ))
converging to H^{p + q}(\mathcal{H}^\bullet ) and similarly for (\mathcal{H}')^\bullet . To finish the proof of the lemma it suffices to show that \mathcal{F}^\bullet \to \mathcal{I}^\bullet induces an isomorphism
H^ p(\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{E}, \mathcal{F}^\bullet )) \longrightarrow H^ p(\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{E}, \mathcal{I}^\bullet ))
on cohomology sheaves whenever \mathcal{E} is a direct summand of a finite free \mathcal{O}_ X-module. Since this is clear when \mathcal{E} is finite free the result follows.
\square
Comments (0)