Definition 36.22.2. Let S be a scheme. Let X, Y be schemes over S. We say X and Y are Tor independent over S if for every x \in X and y \in Y mapping to the same point s \in S the rings \mathcal{O}_{X, x} and \mathcal{O}_{Y, y} are Tor independent over \mathcal{O}_{S, s} (see More on Algebra, Definition 15.61.1).
Comments (0)