Definition 36.22.2. Let $S$ be a scheme. Let $X$, $Y$ be schemes over $S$. We say $X$ and $Y$ are Tor independent over $S$ if for every $x \in X$ and $y \in Y$ mapping to the same point $s \in S$ the rings $\mathcal{O}_{X, x}$ and $\mathcal{O}_{Y, y}$ are Tor independent over $\mathcal{O}_{S, s}$ (see More on Algebra, Definition 15.61.1).
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)