Lemma 21.35.9. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $L$ be an object of $D(\mathcal{O})$. Set $L^\vee = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, \mathcal{O})$. For $M$ in $D(\mathcal{O})$ there is a canonical map

21.35.9.1
$$\label{sites-cohomology-equation-eval} M \otimes ^\mathbf {L}_\mathcal {O} L^\vee \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (L, M)$$

which induces a canonical map

$H^0(\mathcal{C}, M \otimes _\mathcal {O}^\mathbf {L} L^\vee ) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O})}(L, M)$

functorial in $M$ in $D(\mathcal{O})$.

Proof. The map (21.35.9.1) is a special case of Lemma 21.35.6 using the identification $M = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}, M)$. $\square$

There are also:

• 5 comment(s) on Section 21.35: Internal hom in the derived category

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).