Lemma 21.35.8. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Given $K, L$ in $D(\mathcal{O})$ there is a canonical morphism
in $D(\mathcal{O})$ functorial in both $K$ and $L$.
Lemma 21.35.8. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Given $K, L$ in $D(\mathcal{O})$ there is a canonical morphism
in $D(\mathcal{O})$ functorial in both $K$ and $L$.
Proof. Choose a K-flat complex $\mathcal{K}^\bullet $ representing $K$ and any complex of $\mathcal{O}$-modules $\mathcal{L}^\bullet $ representing $L$. Choose a K-injective complex $\mathcal{J}^\bullet $ and a quasi-isomorphism $\text{Tot}(\mathcal{K}^\bullet \otimes _\mathcal {O} \mathcal{L}^\bullet ) \to \mathcal{J}^\bullet $. Then we use
where the first map comes from Lemma 21.34.4. $\square$
Comments (0)
There are also: