Lemma 21.35.7. Let (\mathcal{C}, \mathcal{O}) be a ringed site. Given K, L, M in D(\mathcal{O}) there is a canonical morphism
in D(\mathcal{O}) functorial in K, L, M.
Lemma 21.35.7. Let (\mathcal{C}, \mathcal{O}) be a ringed site. Given K, L, M in D(\mathcal{O}) there is a canonical morphism
in D(\mathcal{O}) functorial in K, L, M.
Proof. Choose a K-flat complex \mathcal{K}^\bullet representing K, and a K-injective complex \mathcal{I}^\bullet representing L, and choose any complex of \mathcal{O}-modules \mathcal{M}^\bullet representing M. Choose a quasi-isomorphism \text{Tot}(\mathcal{K}^\bullet \otimes _{\mathcal{O}_ X} \mathcal{I}^\bullet ) \to \mathcal{J}^\bullet where \mathcal{J}^\bullet is K-injective. Then we use the map
where the first map is the map from Lemma 21.34.3. \square
Comments (0)
There are also: