Situation 91.9.1. A morphism of thickenings of ringed topoi $(f, f')$ is given by a commutative diagram
of ringed topoi whose horizontal arrows are thickenings. In this situation we set $\mathcal{I} = \mathop{\mathrm{Ker}}(i^\sharp ) \subset \mathcal{O}'$ and $\mathcal{J} = \mathop{\mathrm{Ker}}(t^\sharp ) \subset \mathcal{O}_{\mathcal{B}'}$. As $f = f'$ on underlying topoi we will identify the pullback functors $f^{-1}$ and $(f')^{-1}$. Observe that $(f')^\sharp : f^{-1}\mathcal{O}_{\mathcal{B}'} \to \mathcal{O}'$ induces in particular a map $f^{-1}\mathcal{J} \to \mathcal{I}$ and therefore a map of $\mathcal{O}'$-modules
If $i$ and $t$ are first order thickenings, then $(f')^*\mathcal{J} = f^*\mathcal{J}$ and the map above becomes a map $f^*\mathcal{J} \to \mathcal{I}$.
Comments (0)