Remark 91.10.6. Let i : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}') be a trivial first order thickening of ringed topoi and let \pi : (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}') \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) be a trivialization. Then given any triple (\mathcal{F}, \mathcal{K}, c) consisting of a pair of \mathcal{O}-modules and a map c : \mathcal{I} \otimes _\mathcal {O} \mathcal{F} \to \mathcal{K} we may set
and use the splitting (91.10.5.1) associated to \pi and the map c to define the \mathcal{O}'-module structure and obtain an extension (91.10.0.1). We will call \mathcal{F}'_{c, triv} the trivial extension of \mathcal{F} by \mathcal{K} corresponding to c and the trivialization \pi . Given any extension \mathcal{F}' as in (91.10.0.1) we can use \pi ^\sharp : \mathcal{O} \to \mathcal{O}' to think of \mathcal{F}' as an \mathcal{O}-module extension, hence a class \xi _{\mathcal{F}'} in \mathop{\mathrm{Ext}}\nolimits ^1_\mathcal {O}(\mathcal{F}, \mathcal{K}). Lemma 91.10.3 assures that \mathcal{F}' \mapsto \xi _{\mathcal{F}'} induces a bijection
Moreover, the trivial extension \mathcal{F}'_{c, triv} maps to the zero class.
Comments (0)