The Stacks project

Remark 91.10.7. Let $(\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O})$ be a ringed topos. Let $(\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}_ i), \mathcal{O}'_ i)$, $i = 1, 2$ be first order thickenings with ideal sheaves $\mathcal{I}_ i$. Let $h : (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}_1), \mathcal{O}'_1) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}_2), \mathcal{O}'_2)$ be a morphism of first order thickenings of $(\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O})$. Picture

\[ \xymatrix{ & (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \ar[ld] \ar[rd] & \\ (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}_1), \mathcal{O}'_1) \ar[rr]^ h & & (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}_2), \mathcal{O}'_2) } \]

Observe that $h^\sharp : \mathcal{O}'_2 \to \mathcal{O}'_1$ in particular induces an $\mathcal{O}$-module map $\mathcal{I}_2 \to \mathcal{I}_1$. Let $\mathcal{F}$ be an $\mathcal{O}$-module. Let $(\mathcal{K}_ i, c_ i)$, $i = 1, 2$ be a pair consisting of an $\mathcal{O}$-module $\mathcal{K}_ i$ and a map $c_ i : \mathcal{I}_ i \otimes _\mathcal {O} \mathcal{F} \to \mathcal{K}_ i$. Assume furthermore given a map of $\mathcal{O}$-modules $\mathcal{K}_2 \to \mathcal{K}_1$ such that

\[ \xymatrix{ \mathcal{I}_2 \otimes _\mathcal {O} \mathcal{F} \ar[r]_-{c_2} \ar[d] & \mathcal{K}_2 \ar[d] \\ \mathcal{I}_1 \otimes _\mathcal {O} \mathcal{F} \ar[r]^-{c_1} & \mathcal{K}_1 } \]

is commutative. Then there is a canonical functoriality

\[ \left\{ \begin{matrix} \mathcal{F}'_2\text{ as in (08MB) with } \\ c_2 = c_{\mathcal{F}'_2}\text{ and }\mathcal{K} = \mathcal{K}_2 \end{matrix} \right\} \longrightarrow \left\{ \begin{matrix} \mathcal{F}'_1\text{ as in (08MB) with } \\ c_1 = c_{\mathcal{F}'_1}\text{ and }\mathcal{K} = \mathcal{K}_1 \end{matrix} \right\} \]

Namely, thinking of all sheaves $\mathcal{O}$, $\mathcal{O}'_ i$, $\mathcal{F}$, $\mathcal{K}_ i$, etc as sheaves on $\mathcal{C}$, we set given $\mathcal{F}'_2$ the sheaf $\mathcal{F}'_1$ equal to the pushout, i.e., fitting into the following diagram of extensions

\[ \xymatrix{ 0 \ar[r] & \mathcal{K}_2 \ar[r] \ar[d] & \mathcal{F}'_2 \ar[r] \ar[d] & \mathcal{F} \ar@{=}[d] \ar[r] & 0 \\ 0 \ar[r] & \mathcal{K}_1 \ar[r] & \mathcal{F}'_1 \ar[r] & \mathcal{F} \ar[r] & 0 } \]

We omit the construction of the $\mathcal{O}'_1$-module structure on the pushout (this uses the commutativity of the diagram involving $c_1$ and $c_2$).


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08MJ. Beware of the difference between the letter 'O' and the digit '0'.