Remark 91.10.8. Let $(\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O})$, $(\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}_ i), \mathcal{O}'_ i)$, $\mathcal{I}_ i$, and $h : (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}_1), \mathcal{O}'_1) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}_2), \mathcal{O}'_2)$ be as in Remark 91.10.7. Assume that we are given trivializations $\pi _ i : (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}_ i), \mathcal{O}'_ i) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O})$ such that $\pi _1 = h \circ \pi _2$. In other words, assume $h$ is a morphism of trivialized first order thickenings of $(\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O})$. Let $(\mathcal{K}_ i, c_ i)$, $i = 1, 2$ be a pair consisting of an $\mathcal{O}$-module $\mathcal{K}_ i$ and a map $c_ i : \mathcal{I}_ i \otimes _\mathcal {O} \mathcal{F} \to \mathcal{K}_ i$. Assume furthermore given a map of $\mathcal{O}$-modules $\mathcal{K}_2 \to \mathcal{K}_1$ such that
is commutative. In this situation the construction of Remark 91.10.6 induces a commutative diagram
where the vertical map on the right is given by functoriality of $\mathop{\mathrm{Ext}}\nolimits $ and the map $\mathcal{K}_2 \to \mathcal{K}_1$ and the vertical map on the left is the one from Remark 91.10.7.
Comments (0)