The Stacks project

Lemma 12.5.15. Let $\mathcal{A}$ be an abelian category. Let $f:x\to y$ and $g:y\to z$ be morphisms with $g\circ f=0$. Then, the following statements are equivalent:

  1. The sequence $x\overset {f}\to y\overset {g}\to z$ is exact.

  2. For every $h:w\to y$ with $g\circ h=0$ there exist an object $v$, an epimorphism $k:v\to w$ and a morphism $l:v\to x$ with $h\circ k=f\circ l$.

Proof. Let $i:\mathop{\mathrm{Ker}}(g)\to y$ be the canonical injection. Let $p:x\to \mathop{\mathrm{Coim}}(f)$ be the canonical projection. Let $j:\mathop{\mathrm{Im}}(f)\to \mathop{\mathrm{Ker}}(g)$ be the canonical injection.

Suppose (1) holds. Let $h:w\to y$ with $g\circ h=0$. There exists $c:w\to \mathop{\mathrm{Ker}}(g)$ with $i\circ c=h$. Let $v=x\times _{\mathop{\mathrm{Ker}}(g)}w$ with canonical projections $k:v\to w$ and $l:v\to x$, so that $c\circ k=j\circ p\circ l$. Then, $h\circ k=i\circ c\circ k=i\circ j\circ p\circ l=f\circ l$. As $j\circ p$ is an epimorphism by hypothesis, $k$ is an epimorphism by Lemma 12.5.13. This implies (2).

Suppose (2) holds. Then, $g\circ i=0$. So, there are an object $w$, an epimorphism $k:w\to \mathop{\mathrm{Ker}}(g)$ and a morphism $l:w\to x$ with $f\circ l=i\circ k$. It follows $i\circ j\circ p\circ l=f\circ l=i\circ k$. Since $i$ is a monomorphism we see that $j\circ p\circ l=k$ is an epimorphism. So, $j$ is an epimorphisms and thus an isomorphism. This implies (1). $\square$

Comments (0)

There are also:

  • 9 comment(s) on Section 12.5: Abelian categories

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08N5. Beware of the difference between the letter 'O' and the digit '0'.