Situation 21.38.1. Here $(\mathcal{D}, \mathcal{O}_\mathcal {D})$ be a ringed site and $p : \mathcal{C} \to \mathcal{D}$ is a fibred category. We endow $\mathcal{C}$ with the topology inherited from $\mathcal{D}$ (Stacks, Section 8.10). We denote $\pi : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{D})$ the morphism of topoi associated to $p$ (Stacks, Lemma 8.10.3). We set $\mathcal{O}_\mathcal {C} = \pi ^{-1}\mathcal{O}_\mathcal {D}$ so that we obtain a morphism of ringed topoi
\[ \pi : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \longrightarrow (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D}) \]
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)