Situation 21.38.3. Let (\mathcal{D}, \mathcal{O}_\mathcal {D}) be a ringed site. Let u : \mathcal{C}' \to \mathcal{C} be a 1-morphism of fibred categories over \mathcal{D} (Categories, Definition 4.33.9). Endow \mathcal{C} and \mathcal{C}' with their inherited topologies (Stacks, Definition 8.10.2) and let \pi : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \pi ' : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}') \to \mathop{\mathit{Sh}}\nolimits (\mathcal{D}), and g : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}') \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) be the corresponding morphisms of topoi (Stacks, Lemma 8.10.3). Set \mathcal{O}_\mathcal {C} = \pi ^{-1}\mathcal{O}_\mathcal {D} and \mathcal{O}_{\mathcal{C}'} = (\pi ')^{-1}\mathcal{O}_\mathcal {D}. Observe that g^{-1}\mathcal{O}_\mathcal {C} = \mathcal{O}_{\mathcal{C}'} so that
is a commutative diagram of morphisms of ringed topoi.
Comments (0)