Lemma 21.38.4. Assumptions and notation as in Situation 21.38.3. For U' \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}') set U = u(U') and V = p'(U') and consider the induced morphisms of ringed topoi
\xymatrix{ (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'/U'), \mathcal{O}_{U'}) \ar[rd]_{\pi '_{U'}} \ar[rr]_{g'} & & (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_ U) \ar[ld]^{\pi _ U} \\ & (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}/V), \mathcal{O}_ V) }
Then there exists a morphism of topoi
\sigma ' : \mathop{\mathit{Sh}}\nolimits (\mathcal{D}/V) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}'/U'),
such that setting \sigma = g' \circ \sigma ' we have \pi '_{U'} \circ \sigma ' = \text{id}, \pi _ U \circ \sigma = \text{id}, (\sigma ')^{-1} = \pi '_{U', *}, and \sigma ^{-1} = \pi _{U, *}.
Proof.
Let v' : \mathcal{D}/V \to \mathcal{C}'/U' be the functor constructed in the proof of Lemma 21.38.2 starting with p' : \mathcal{C}' \to \mathcal{D}' and the object U'. Since u is a 1-morphism of fibred categories over \mathcal{D} it transforms strongly cartesian morphisms into strongly cartesian morphisms, hence the functor v = u \circ v' is the functor of the proof of Lemma 21.38.2 relative to p : \mathcal{C} \to \mathcal{D} and U. Thus our lemma follows from that lemma.
\square
Comments (0)