Lemma 92.5.3. Let $A$ be a Noetherian ring. Let $A \to B$ be a finite type ring map. Let $\pi $, $\underline{B}$ be as in (92.4.0.1). If $\mathcal{F}$ is an $\underline{B}$-module such that $\mathcal{F}(P, \alpha )$ is a finite $B$-module for all $\alpha : P = A[x_1, \ldots , x_ n] \to B$, then the cohomology modules of $L\pi _!(\mathcal{F})$ are finite $B$-modules.

**Proof.**
By Lemma 92.4.1 and Proposition 92.5.2 we can compute $L\pi _!(\mathcal{F})$ by a complex constructed out of the values of $\mathcal{F}$ on finite type polynomial algebras.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)