Proposition 89.5.2. Let $A$ be a Noetherian ring. Let $A \to B$ be a finite type ring map. There exists a simplicial $A$-algebra $P_\bullet $ with an augmentation $\epsilon : P_\bullet \to B$ such that each $P_ n$ is a polynomial algebra of finite type over $A$ and such that $\epsilon $ is a trivial Kan fibration of simplicial sets.

**Proof.**
Let $\mathcal{A}$ be the category of $A$-algebra maps $C \to B$. In this proof our simplicial objects and skeleton and coskeleton functors will be taken in this category.

Choose a polynomial algebra $P_0$ of finite type over $A$ and a surjection $P_0 \to B$. As a first approximation we take $P_\bullet = \text{cosk}_0(P_0)$. In other words, $P_\bullet $ is the simplicial $A$-algebra with terms $P_ n = P_0 \times _ A \ldots \times _ A P_0$. (In the final paragraph of the proof this simplicial object will be denoted $P^0_\bullet $.) By Simplicial, Lemma 14.32.3 the map $P_\bullet \to B$ is a trivial Kan fibration of simplicial sets. Also, observe that $P_\bullet = \text{cosk}_0 \text{sk}_0 P_\bullet $.

Suppose for some $n \geq 0$ we have constructed $P_\bullet $ (in the final paragraph of the proof this will be $P^ n_\bullet $) such that

$P_\bullet \to B$ is a trivial Kan fibration of simplicial sets,

$P_ k$ is a finitely generated polynomial algebra for $0 \leq k \leq n$, and

$P_\bullet = \text{cosk}_ n \text{sk}_ n P_\bullet $

By Lemma 89.5.1 we can find a finitely generated polynomial algebra $Q$ over $A$ and a surjection $Q \to P_{n + 1}$. Since $P_ n$ is a polynomial algebra the $A$-algebra maps $s_ i : P_ n \to P_{n + 1}$ lift to maps $s'_ i : P_ n \to Q$. Set $d'_ j : Q \to P_ n$ equal to the composition of $Q \to P_{n + 1}$ and $d_ j : P_{n + 1} \to P_ n$. We obtain a truncated simplicial object $P'_\bullet $ of $\mathcal{A}$ by setting $P'_ k = P_ k$ for $k \leq n$ and $P'_{n + 1} = Q$ and morphisms $d'_ i = d_ i$ and $s'_ i = s_ i$ in degrees $k \leq n - 1$ and using the morphisms $d'_ j$ and $s'_ i$ in degree $n$. Extend this to a full simplicial object $P'_\bullet $ of $\mathcal{A}$ using $\text{cosk}_{n + 1}$. By functoriality of the coskeleton functors there is a morphism $P'_\bullet \to P_\bullet $ of simplicial objects extending the given morphism of $(n + 1)$-truncated simplicial objects. (This morphism will be denoted $P^{n + 1}_\bullet \to P^ n_\bullet $ in the final paragraph of the proof.)

Note that conditions (b) and (c) are satisfied for $P'_\bullet $ with $n$ replaced by $n + 1$. We claim the map $P'_\bullet \to P_\bullet $ satisfies assumptions (1), (2), (3), and (4) of Simplicial, Lemmas 14.32.1 with $n + 1$ instead of $n$. Conditions (1) and (2) hold by construction. By Simplicial, Lemma 14.19.14 we see that we have $P_\bullet = \text{cosk}_{n + 1}\text{sk}_{n + 1}P_\bullet $ and $P'_\bullet = \text{cosk}_{n + 1}\text{sk}_{n + 1}P'_\bullet $ not only in $\mathcal{A}$ but also in the category of $A$-algebras, whence in the category of sets (as the forgetful functor from $A$-algebras to sets commutes with all limits). This proves (3) and (4). Thus the lemma applies and $P'_\bullet \to P_\bullet $ is a trivial Kan fibration. By Simplicial, Lemma 14.30.4 we conclude that $P'_\bullet \to B$ is a trivial Kan fibration and (a) holds as well.

To finish the proof we take the inverse limit $P_\bullet = \mathop{\mathrm{lim}}\nolimits P^ n_\bullet $ of the sequence of simplicial algebras

constructed above. The map $P_\bullet \to B$ is a trivial Kan fibration by Simplicial, Lemma 14.30.5. However, the construction above stabilizes in each degree to a fixed finitely generated polynomial algebra as desired. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)