Proof.
Consider a solid diagram
\xymatrix{ \partial \Delta [k] \ar[r] \ar[d] & V \ar[d] \\ \Delta [k] \ar[r] \ar@{-->}[ru] & U }
as in Definition 14.30.1. Let x \in U_ k be the k-simplex corresponding to the lower horizontal arrow. If k \leq n then the dotted arrow is the one corresponding to a lift y \in V_ k of x; the diagram will commute as the other nondegenerate simplices of \Delta [k] are in degrees < k where f is an isomorphism. If k > n, then by conditions (3) and (4) we have (using adjointness of skeleton and coskeleton functors)
\mathop{\mathrm{Mor}}\nolimits (\Delta [k], U) = \mathop{\mathrm{Mor}}\nolimits (\text{sk}_ n\Delta [k], \text{sk}_ nU) = \mathop{\mathrm{Mor}}\nolimits (\text{sk}_ n\partial \Delta [k], \text{sk}_ nU) = \mathop{\mathrm{Mor}}\nolimits (\partial \Delta [k], U)
and similarly for V because \text{sk}_ n\Delta [k] = \text{sk}_ n\partial \Delta [k] for k > n. Thus we obtain a unique dotted arrow fitting into the diagram in this case also.
\square
Comments (0)