Lemma 91.14.3. Let $A \to B$ be a surjective ring map whose kernel $I$ is Koszul. Then $L_{B/A}$ is quasi-isomorphic to $I/I^2[1]$.

**Proof.**
Locally on $\mathop{\mathrm{Spec}}(A)$ the ideal $I$ is generated by a Koszul regular sequence, see More on Algebra, Definition 15.32.1. Hence this follows from Lemma 91.6.2.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)