Lemma 92.14.2. Let $A \to B$ be a surjective ring map whose kernel $I$ is generated by a Koszul-regular sequence (for example a regular sequence). Then $L_{B/A}$ is quasi-isomorphic to $I/I^2[1]$.
Proof. Let $f_1, \ldots , f_ r \in I$ be a Koszul regular sequence generating $I$. Consider the ring map $\mathbf{Z}[x_1, \ldots , x_ r] \to A$ sending $x_ i$ to $f_ i$. Since $x_1, \ldots , x_ r$ is a regular sequence in $\mathbf{Z}[x_1, \ldots , x_ r]$ we see that the Koszul complex on $x_1, \ldots , x_ r$ is a free resolution of $\mathbf{Z} = \mathbf{Z}[x_1, \ldots , x_ r]/(x_1, \ldots , x_ r)$ over $\mathbf{Z}[x_1, \ldots , x_ r]$ (see More on Algebra, Lemma 15.30.2). Thus the assumption that $f_1, \ldots , f_ r$ is Koszul regular exactly means that $B = A \otimes _{\mathbf{Z}[x_1, \ldots , x_ r]}^\mathbf {L} \mathbf{Z}$. Hence $L_{B/A} = L_{\mathbf{Z}/\mathbf{Z}[x_1, \ldots , x_ r]} \otimes _\mathbf {Z}^\mathbf {L} B$ by Lemmas 92.6.2 and 92.14.1. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #5104 by Noah Olander on
Comment #5311 by Johan on