Lemma 20.36.8. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $E \in D(\mathcal{O}_ X)$. Assume there exist a function $p(-) : \mathbf{Z} \to \mathbf{Z}$ and a set $\mathcal{B}$ of opens of $X$ such that

every open in $X$ has a covering whose members are elements of $\mathcal{B}$, and

$H^ p(U, H^{m - p}(E)) = 0$ for $p > p(m)$ and $U \in \mathcal{B}$.

Then the canonical map $E \to R\mathop{\mathrm{lim}}\nolimits \tau _{\geq -n} E$ is an isomorphism in $D(\mathcal{O}_ X)$.

## Comments (0)