Lemma 20.36.9. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $E \in D(\mathcal{O}_ X)$. Assume there exist an integer $d \geq 0$ and a basis $\mathcal{B}$ for the topology of $X$ such that
Then the canonical map $E \to R\mathop{\mathrm{lim}}\nolimits \tau _{\geq -n} E$ is an isomorphism in $D(\mathcal{O}_ X)$.
Comments (0)