Lemma 91.7.2. Let X be a topological space. Let \mathcal{A} \to \mathcal{B} be a homomorphism of sheaves of rings. Let \mathcal{G} be a \mathcal{B}-module. Let \xi \in \mathop{\mathrm{Ext}}\nolimits ^1_\mathcal {B}(\mathop{N\! L}\nolimits _{\mathcal{B}/\mathcal{A}}, \mathcal{G}). There exists a map of sheaves of sets \alpha : \mathcal{E} \to \mathcal{B} such that \xi \in \mathop{\mathrm{Ext}}\nolimits ^1_\mathcal {B}(\mathop{N\! L}\nolimits (\alpha ), \mathcal{G}) is the class of a map \mathcal{I}/\mathcal{I}^2 \to \mathcal{G} (see proof for notation).
Proof. Recall that given \alpha : \mathcal{E} \to \mathcal{B} such that \mathcal{A}[\mathcal{E}] \to \mathcal{B} is surjective with kernel \mathcal{I} the complex \mathop{N\! L}\nolimits (\alpha ) = (\mathcal{I}/\mathcal{I}^2 \to \Omega _{\mathcal{A}[\mathcal{E}]/\mathcal{A}} \otimes _{\mathcal{A}[\mathcal{E}]} \mathcal{B}) is canonically isomorphic to \mathop{N\! L}\nolimits _{\mathcal{B}/\mathcal{A}}, see Modules, Lemma 17.31.2. Observe moreover, that \Omega = \Omega _{\mathcal{A}[\mathcal{E}]/\mathcal{A}} \otimes _{\mathcal{A}[\mathcal{E}]} \mathcal{B} is the sheaf associated to the presheaf U \mapsto \bigoplus _{e \in \mathcal{E}(U)} \mathcal{B}(U). In other words, \Omega is the free \mathcal{B}-module on the sheaf of sets \mathcal{E} and in particular there is a canonical map \mathcal{E} \to \Omega .
Having said this, pick some \mathcal{E} (for example \mathcal{E} = \mathcal{B} as in the definition of the naive cotangent complex). The obstruction to writing \xi as the class of a map \mathcal{I}/\mathcal{I}^2 \to \mathcal{G} is an element in \mathop{\mathrm{Ext}}\nolimits ^1_\mathcal {B}(\Omega , \mathcal{G}). Say this is represented by the extension 0 \to \mathcal{G} \to \mathcal{H} \to \Omega \to 0 of \mathcal{B}-modules. Consider the sheaf of sets \mathcal{E}' = \mathcal{E} \times _\Omega \mathcal{H} which comes with an induced map \alpha ' : \mathcal{E}' \to \mathcal{B}. Let \mathcal{I}' = \mathop{\mathrm{Ker}}(\mathcal{A}[\mathcal{E}'] \to \mathcal{B}) and \Omega ' = \Omega _{\mathcal{A}[\mathcal{E}']/\mathcal{A}} \otimes _{\mathcal{A}[\mathcal{E}']} \mathcal{B}. The pullback of \xi under the quasi-isomorphism \mathop{N\! L}\nolimits (\alpha ') \to \mathop{N\! L}\nolimits (\alpha ) maps to zero in \mathop{\mathrm{Ext}}\nolimits ^1_\mathcal {B}(\Omega ', \mathcal{G}) because the pullback of the extension \mathcal{H} by the map \Omega ' \to \Omega is split as \Omega ' is the free \mathcal{B}-module on the sheaf of sets \mathcal{E}' and since by construction there is a commutative diagram
This finishes the proof. \square
Comments (0)