The Stacks project

Lemma 91.7.3. If there exists a solution to (, then the set of isomorphism classes of solutions is principal homogeneous under $\mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(\mathop{N\! L}\nolimits _{X/S}, \mathcal{G})$.

Proof. We observe right away that given two solutions $X'_1$ and $X'_2$ to ( we obtain by Lemma 91.7.1 an obstruction element $o(X'_1, X'_2) \in \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(\mathop{N\! L}\nolimits _{X/S}, \mathcal{G})$ to the existence of a map $X'_1 \to X'_2$. Clearly, this element is the obstruction to the existence of an isomorphism, hence separates the isomorphism classes. To finish the proof it therefore suffices to show that given a solution $X'$ and an element $\xi \in \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(\mathop{N\! L}\nolimits _{X/S}, \mathcal{G})$ we can find a second solution $X'_\xi $ such that $o(X', X'_\xi ) = \xi $.

Pick $\alpha : \mathcal{E} \to \mathcal{O}_ X$ as in Lemma 91.7.2 for the class $\xi $. Consider the surjection $f^{-1}\mathcal{O}_ S[\mathcal{E}] \to \mathcal{O}_ X$ with kernel $\mathcal{I}$ and corresponding naive cotangent complex $\mathop{N\! L}\nolimits (\alpha ) = (\mathcal{I}/\mathcal{I}^2 \to \Omega _{f^{-1}\mathcal{O}_ S[\mathcal{E}]/f^{-1}\mathcal{O}_ S} \otimes _{f^{-1}\mathcal{O}_ S[\mathcal{E}]} \mathcal{O}_ X)$. By the lemma $\xi $ is the class of a morphism $\delta : \mathcal{I}/\mathcal{I}^2 \to \mathcal{G}$. After replacing $\mathcal{E}$ by $\mathcal{E} \times _{\mathcal{O}_ X} \mathcal{O}_{X'}$ we may also assume that $\alpha $ factors through a map $\alpha ' : \mathcal{E} \to \mathcal{O}_{X'}$.

These choices determine an $f^{-1}\mathcal{O}_{S'}$-algebra map $\varphi : \mathcal{O}_{S'}[\mathcal{E}] \to \mathcal{O}_{X'}$. Let $\mathcal{I}' = \mathop{\mathrm{Ker}}(\varphi )$. Observe that $\varphi $ induces a map $\varphi |_{\mathcal{I}'} : \mathcal{I}' \to \mathcal{G}$ and that $\mathcal{O}_{X'}$ is the pushout, as in the following diagram

\[ \xymatrix{ 0 \ar[r] & \mathcal{G} \ar[r] & \mathcal{O}_{X'} \ar[r] & \mathcal{O}_ X \ar[r] & 0 \\ 0 \ar[r] & \mathcal{I}' \ar[u]^{\varphi |_{\mathcal{I}'}} \ar[r] & f^{-1}\mathcal{O}_{S'}[\mathcal{E}] \ar[u] \ar[r] & \mathcal{O}_ X \ar[u]_{=} \ar[r] & 0 } \]

Let $\psi : \mathcal{I}' \to \mathcal{G}$ be the sum of the map $\varphi |_{\mathcal{I}'}$ and the composition

\[ \mathcal{I}' \to \mathcal{I}'/(\mathcal{I}')^2 \to \mathcal{I}/\mathcal{I}^2 \xrightarrow {\delta } \mathcal{G}. \]

Then the pushout along $\psi $ is an other ring extension $\mathcal{O}_{X'_\xi }$ fitting into a diagram as above. A calculation (omitted) shows that $o(X', X'_\xi ) = \xi $ as desired. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08UC. Beware of the difference between the letter 'O' and the digit '0'.