Definition 91.26.1. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. The *cotangent complex $L_{X/Y}$ of $X$ over $Y$* is the cotangent complex of the morphism of ringed topoi $f_{small}$ between the small étale sites of $X$ and $Y$ (see Properties of Spaces, Lemma 65.21.3 and Definition 91.22.1).

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)