Processing math: 100%

The Stacks project

92.26 The cotangent complex of a morphism of algebraic spaces

We define the cotangent complex of a morphism of algebraic spaces using the associated morphism between the small étale sites.

Definition 92.26.1. Let S be a scheme. Let f : X \to Y be a morphism of algebraic spaces over S. The cotangent complex L_{X/Y} of X over Y is the cotangent complex of the morphism of ringed topoi f_{small} between the small étale sites of X and Y (see Properties of Spaces, Lemma 66.21.3 and Definition 92.22.1).

In particular, the results of Section 92.22 apply to cotangent complexes of morphisms of algebraic spaces. The next lemmas show this definition is compatible with the definition for ring maps and for schemes and that L_{X/Y} is an object of D_\mathit{QCoh}(\mathcal{O}_ X).

Lemma 92.26.2. Let S be a scheme. Consider a commutative diagram

\xymatrix{ U \ar[d]_ p \ar[r]_ g & V \ar[d]^ q \\ X \ar[r]^ f & Y }

of algebraic spaces over S with p and q étale. Then there is a canonical identification L_{X/Y}|_{U_{\acute{e}tale}} = L_{U/V} in D(\mathcal{O}_ U).

Proof. Formation of the cotangent complex commutes with pullback (Lemma 92.18.3) and we have p_{small}^{-1}\mathcal{O}_ X = \mathcal{O}_ U and g_{small}^{-1}\mathcal{O}_{V_{\acute{e}tale}} = p_{small}^{-1}f_{small}^{-1}\mathcal{O}_{Y_{\acute{e}tale}} because q_{small}^{-1}\mathcal{O}_{Y_{\acute{e}tale}} = \mathcal{O}_{V_{\acute{e}tale}} (Properties of Spaces, Lemma 66.26.1). Tracing through the definitions we conclude that L_{X/Y}|_{U_{\acute{e}tale}} = L_{U/V}. \square

Lemma 92.26.3. Let S be a scheme. Let f : X \to Y be a morphism of algebraic spaces over S. Assume X and Y representable by schemes X_0 and Y_0. Then there is a canonical identification L_{X/Y} = \epsilon ^*L_{X_0/Y_0} in D(\mathcal{O}_ X) where \epsilon is as in Derived Categories of Spaces, Section 75.4 and L_{X_0/Y_0} is as in Definition 92.24.1.

Proof. Let f_0 : X_0 \to Y_0 be the morphism of schemes corresponding to f. There is a canonical map \epsilon ^{-1}f_0^{-1}\mathcal{O}_{Y_0} \to f_{small}^{-1}\mathcal{O}_ Y compatible with \epsilon ^\sharp : \epsilon ^{-1}\mathcal{O}_{X_0} \to \mathcal{O}_ X because there is a commutative diagram

\xymatrix{ X_{0, Zar} \ar[d]_{f_0} & X_{\acute{e}tale}\ar[l]^\epsilon \ar[d]^ f \\ Y_{0, Zar} & Y_{\acute{e}tale}\ar[l]_\epsilon }

see Derived Categories of Spaces, Remark 75.6.3. Thus we obtain a canonical map

\epsilon ^{-1}L_{X_0/Y_0} = \epsilon ^{-1}L_{\mathcal{O}_{X_0}/f_0^{-1}\mathcal{O}_{Y_0}} = L_{\epsilon ^{-1}\mathcal{O}_{X_0}/\epsilon ^{-1}f_0^{-1}\mathcal{O}_{Y_0}} \longrightarrow L_{\mathcal{O}_ X/f^{-1}_{small}\mathcal{O}_ Y} = L_{X/Y}

by the functoriality discussed in Section 92.18 and Lemma 92.18.3. To see that the induced map \epsilon ^*L_{X_0/Y_0} \to L_{X/Y} is an isomorphism we may check on stalks at geometric points (Properties of Spaces, Theorem 66.19.12). We will use Lemma 92.18.9 to compute the stalks. Let \overline{x} : \mathop{\mathrm{Spec}}(k) \to X_0 be a geometric point lying over x \in X_0, with \overline{y} = f \circ \overline{x} lying over y \in Y_0. Then

L_{X/Y, \overline{x}} = L_{\mathcal{O}_{X, \overline{x}}/\mathcal{O}_{Y, \overline{y}}}

and

(\epsilon ^*L_{X_0/Y_0})_{\overline{x}} = L_{X_0/Y_0, x} \otimes _{\mathcal{O}_{X_0, x}} \mathcal{O}_{X, \overline{x}} = L_{\mathcal{O}_{X_0, x}/\mathcal{O}_{Y_0, y}} \otimes _{\mathcal{O}_{X_0, x}} \mathcal{O}_{X, \overline{x}}

Some details omitted (hint: use that the stalk of a pullback is the stalk at the image point, see Sites, Lemma 7.34.2, as well as the corresponding result for modules, see Modules on Sites, Lemma 18.36.4). Observe that \mathcal{O}_{X, \overline{x}} is the strict henselization of \mathcal{O}_{X_0, x} and similarly for \mathcal{O}_{Y, \overline{y}} (Properties of Spaces, Lemma 66.22.1). Thus the result follows from Lemma 92.8.7. \square

Lemma 92.26.4. Let \Lambda be a ring. Let X be an algebraic space over \Lambda . Then

L_{X/\mathop{\mathrm{Spec}}(\Lambda )} = L_{\mathcal{O}_ X/\underline{\Lambda }}

where \underline{\Lambda } is the constant sheaf with value \Lambda on X_{\acute{e}tale}.

Proof. Let p : X \to \mathop{\mathrm{Spec}}(\Lambda ) be the structure morphism. Let q : \mathop{\mathrm{Spec}}(\Lambda )_{\acute{e}tale}\to (*, \Lambda ) be the obvious morphism. By the distinguished triangle of Lemma 92.22.3 it suffices to show that L_ q = 0. To see this it suffices to show (Properties of Spaces, Theorem 66.19.12) for a geometric point \overline{t} : \mathop{\mathrm{Spec}}(k) \to \mathop{\mathrm{Spec}}(\Lambda ) that

(L_ q)_{\overline{t}} = L_{\mathcal{O}_{\mathop{\mathrm{Spec}}(\Lambda )_{\acute{e}tale}, \overline{t}}/\Lambda }

(Lemma 92.18.9) is zero. Since \mathcal{O}_{\mathop{\mathrm{Spec}}(\Lambda )_{\acute{e}tale}, \overline{t}} is a strict henselization of a local ring of \Lambda (Properties of Spaces, Lemma 66.22.1) this follows from Lemma 92.8.4. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.