Lemma 92.26.2. Let $S$ be a scheme. Consider a commutative diagram
of algebraic spaces over $S$ with $p$ and $q$ étale. Then there is a canonical identification $L_{X/Y}|_{U_{\acute{e}tale}} = L_{U/V}$ in $D(\mathcal{O}_ U)$.
Lemma 92.26.2. Let $S$ be a scheme. Consider a commutative diagram
of algebraic spaces over $S$ with $p$ and $q$ étale. Then there is a canonical identification $L_{X/Y}|_{U_{\acute{e}tale}} = L_{U/V}$ in $D(\mathcal{O}_ U)$.
Proof. Formation of the cotangent complex commutes with pullback (Lemma 92.18.3) and we have $p_{small}^{-1}\mathcal{O}_ X = \mathcal{O}_ U$ and $g_{small}^{-1}\mathcal{O}_{V_{\acute{e}tale}} = p_{small}^{-1}f_{small}^{-1}\mathcal{O}_{Y_{\acute{e}tale}}$ because $q_{small}^{-1}\mathcal{O}_{Y_{\acute{e}tale}} = \mathcal{O}_{V_{\acute{e}tale}}$ (Properties of Spaces, Lemma 66.26.1). Tracing through the definitions we conclude that $L_{X/Y}|_{U_{\acute{e}tale}} = L_{U/V}$. $\square$
Comments (0)