Lemma 92.26.2. Let S be a scheme. Consider a commutative diagram
of algebraic spaces over S with p and q étale. Then there is a canonical identification L_{X/Y}|_{U_{\acute{e}tale}} = L_{U/V} in D(\mathcal{O}_ U).
Lemma 92.26.2. Let S be a scheme. Consider a commutative diagram
of algebraic spaces over S with p and q étale. Then there is a canonical identification L_{X/Y}|_{U_{\acute{e}tale}} = L_{U/V} in D(\mathcal{O}_ U).
Proof. Formation of the cotangent complex commutes with pullback (Lemma 92.18.3) and we have p_{small}^{-1}\mathcal{O}_ X = \mathcal{O}_ U and g_{small}^{-1}\mathcal{O}_{V_{\acute{e}tale}} = p_{small}^{-1}f_{small}^{-1}\mathcal{O}_{Y_{\acute{e}tale}} because q_{small}^{-1}\mathcal{O}_{Y_{\acute{e}tale}} = \mathcal{O}_{V_{\acute{e}tale}} (Properties of Spaces, Lemma 66.26.1). Tracing through the definitions we conclude that L_{X/Y}|_{U_{\acute{e}tale}} = L_{U/V}. \square
Comments (0)