Lemma 92.26.2. Let $S$ be a scheme. Consider a commutative diagram

of algebraic spaces over $S$ with $p$ and $q$ étale. Then there is a canonical identification $L_{X/Y}|_{U_{\acute{e}tale}} = L_{U/V}$ in $D(\mathcal{O}_ U)$.

Lemma 92.26.2. Let $S$ be a scheme. Consider a commutative diagram

\[ \xymatrix{ U \ar[d]_ p \ar[r]_ g & V \ar[d]^ q \\ X \ar[r]^ f & Y } \]

of algebraic spaces over $S$ with $p$ and $q$ étale. Then there is a canonical identification $L_{X/Y}|_{U_{\acute{e}tale}} = L_{U/V}$ in $D(\mathcal{O}_ U)$.

**Proof.**
Formation of the cotangent complex commutes with pullback (Lemma 92.18.3) and we have $p_{small}^{-1}\mathcal{O}_ X = \mathcal{O}_ U$ and $g_{small}^{-1}\mathcal{O}_{V_{\acute{e}tale}} = p_{small}^{-1}f_{small}^{-1}\mathcal{O}_{Y_{\acute{e}tale}}$ because $q_{small}^{-1}\mathcal{O}_{Y_{\acute{e}tale}} = \mathcal{O}_{V_{\acute{e}tale}}$ (Properties of Spaces, Lemma 66.26.1). Tracing through the definitions we conclude that $L_{X/Y}|_{U_{\acute{e}tale}} = L_{U/V}$.
$\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)