Lemma 92.26.4. Let $\Lambda $ be a ring. Let $X$ be an algebraic space over $\Lambda $. Then
where $\underline{\Lambda }$ is the constant sheaf with value $\Lambda $ on $X_{\acute{e}tale}$.
Lemma 92.26.4. Let $\Lambda $ be a ring. Let $X$ be an algebraic space over $\Lambda $. Then
where $\underline{\Lambda }$ is the constant sheaf with value $\Lambda $ on $X_{\acute{e}tale}$.
Proof. Let $p : X \to \mathop{\mathrm{Spec}}(\Lambda )$ be the structure morphism. Let $q : \mathop{\mathrm{Spec}}(\Lambda )_{\acute{e}tale}\to (*, \Lambda )$ be the obvious morphism. By the distinguished triangle of Lemma 92.22.3 it suffices to show that $L_ q = 0$. To see this it suffices to show (Properties of Spaces, Theorem 66.19.12) for a geometric point $\overline{t} : \mathop{\mathrm{Spec}}(k) \to \mathop{\mathrm{Spec}}(\Lambda )$ that
(Lemma 92.18.9) is zero. Since $\mathcal{O}_{\mathop{\mathrm{Spec}}(\Lambda )_{\acute{e}tale}, \overline{t}}$ is a strict henselization of a local ring of $\Lambda $ (Properties of Spaces, Lemma 66.22.1) this follows from Lemma 92.8.4. $\square$
Comments (0)