The Stacks project

Lemma 10.158.1. Let $K/k$ be a finitely generated field extension. The following are equivalent

  1. $K$ is a finite separable field extension of $k$,

  2. $\Omega _{K/k} = 0$,

  3. $K$ is formally unramified over $k$,

  4. $K$ is unramified over $k$,

  5. $K$ is formally ├ętale over $k$,

  6. $K$ is ├ętale over $k$.

Proof. The equivalence of (2) and (3) is Lemma 10.148.2. By Lemma 10.143.4 we see that (1) is equivalent to (6). Property (6) implies (5) and (4) which both in turn imply (3) (Lemmas 10.150.2, 10.151.3, and 10.151.2). Thus it suffices to show that (2) implies (1). Choose a finitely generated $k$-subalgebra $A \subset K$ such that $K$ is the fraction field of the domain $A$. Set $S = A \setminus \{ 0\} $. Since $0 = \Omega _{K/k} = S^{-1}\Omega _{A/k}$ (Lemma 10.131.8) and since $\Omega _{A/k}$ is finitely generated (Lemma 10.131.16), we can replace $A$ by a localization $A_ f$ to reduce to the case that $\Omega _{A/k} = 0$ (details omitted). Then $A$ is unramified over $k$, hence $K/k$ is finite separable for example by Lemma 10.151.5 applied with $\mathfrak q = (0)$. $\square$

Comments (0)

There are also:

  • 2 comment(s) on Section 10.158: Formal smoothness of fields

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 090W. Beware of the difference between the letter 'O' and the digit '0'.