The Stacks project

Lemma 15.91.1. Let $A$ be a ring. Let $f \in A$. Let $K \in D(A)$. The following are equivalent

  1. $\mathop{\mathrm{Ext}}\nolimits ^ n_ A(A_ f, K) = 0$ for all $n$,

  2. $\mathop{\mathrm{Hom}}\nolimits _{D(A)}(E, K) = 0$ for all $E$ in $D(A_ f)$,

  3. $T(K, f) = 0$,

  4. for every $p \in \mathbf{Z}$ we have $T(H^ p(K), f) = 0$,

  5. for every $p \in \mathbf{Z}$ we have $\mathop{\mathrm{Hom}}\nolimits _ A(A_ f, H^ p(K)) = 0$ and $\mathop{\mathrm{Ext}}\nolimits ^1_ A(A_ f, H^ p(K)) = 0$,

  6. $R\mathop{\mathrm{Hom}}\nolimits _ A(A_ f, K) = 0$,

  7. the map $\prod _{n \geq 0} K \to \prod _{n \geq 0} K$, $(x_0, x_1, \ldots ) \mapsto (x_0 - fx_1, x_1 - fx_2, \ldots )$ is an isomorphism in $D(A)$, and

  8. add more here.

Proof. It is clear that (2) implies (1) and that (1) is equivalent to (6). Assume (1). Let $I^\bullet $ be a K-injective complex of $A$-modules representing $K$. Condition (1) signifies that $\mathop{\mathrm{Hom}}\nolimits _ A(A_ f, I^\bullet )$ is acyclic. Let $M^\bullet $ be a complex of $A_ f$-modules representing $E$. Then

\[ \mathop{\mathrm{Hom}}\nolimits _{D(A)}(E, K) = \mathop{\mathrm{Hom}}\nolimits _{K(A)}(M^\bullet , I^\bullet ) = \mathop{\mathrm{Hom}}\nolimits _{K(A_ f)}(M^\bullet , \mathop{\mathrm{Hom}}\nolimits _ A(A_ f, I^\bullet )) \]

by Algebra, Lemma 10.14.4. As $\mathop{\mathrm{Hom}}\nolimits _ A(A_ f, I^\bullet )$ is a K-injective complex of $A_ f$-modules by Lemma 15.56.3 the fact that it is acyclic implies that it is homotopy equivalent to zero (Derived Categories, Lemma 13.31.2). Thus we get (2).

A free resolution of the $A$-module $A_ f$ is given by

\[ 0 \to \bigoplus \nolimits _{n \in \mathbf{N}} A \to \bigoplus \nolimits _{n \in \mathbf{N}} A \to A_ f \to 0 \]

where the first map sends the $(a_0, a_1, a_2, \ldots )$ to $(a_0, a_1 - fa_0, a_2 - fa_1, \ldots )$ and the second map sends $(a_0, a_1, a_2, \ldots )$ to $a_0 + a_1/f + a_2/f^2 + \ldots $. Applying $\mathop{\mathrm{Hom}}\nolimits _ A(-, I^\bullet )$ we get

\[ 0 \to \mathop{\mathrm{Hom}}\nolimits _ A(A_ f, I^\bullet ) \to \prod I^\bullet \to \prod I^\bullet \to 0 \]

Since $\prod I^\bullet $ represents $\prod _{n \geq 0} K$ this proves the equivalence of (1) and (7). On the other hand, by construction of derived limits in Derived Categories, Section 13.34 the displayed exact sequence shows the object $T(K, f)$ is a representative of $R\mathop{\mathrm{Hom}}\nolimits _ A(A_ f, K)$ in $D(A)$. Thus the equivalence of (1) and (3).

There is a spectral sequence

\[ E_2^{p, q} = \mathop{\mathrm{Ext}}\nolimits ^ p_ A(A_ f, H^ q(K)) \Rightarrow \mathop{\mathrm{Ext}}\nolimits ^{p + q}_ A(A_ f, K) \]

See Equation (15.67.0.1). This spectral sequence degenerates at $E_2$ because $A_ f$ has a length $1$ resolution by projective $A$-modules (see above) hence the $E_2$-page has only 2 nonzero columns. Thus we obtain short exact sequences

\[ 0 \to \mathop{\mathrm{Ext}}\nolimits ^1_ A(A_ f, H^{p - 1}(K)) \to \mathop{\mathrm{Ext}}\nolimits ^ p_ A(A_ f, K) \to \mathop{\mathrm{Hom}}\nolimits _ A(A_ f, H^ p(K)) \to 0 \]

This proves (4) and (5) are equivalent to (1). $\square$


Comments (4)

Comment #3060 by Noah Olander on

I think the resolution of A_f is not quite right. I think the first map should be changed to (a_1, a_2,a_3,...) maps to (-a_1, fa_1 - a_2, fa_2 - a_3, ...).

Also a possibility for (7) "Add more here" is that the map from the infinite product of K to itself given by (x_0,x_1, ...) maps to (x_0 - fx_1, x_1 - fx_2, ...) be a quasi-isomorphism.

Comment #6496 by on

In #6491 Daichi Takeuchi suggested swapping the indices in the spectral sequence. We have changed them here and added a reference to Section 15.67.

Comment #9470 by Ryo Suzuki on

In the proof a spectral sequence 15.67.0.1 is used. But why we can use it? There is an assumption that is bounded below in Section 15.67...

There are also:

  • 14 comment(s) on Section 15.91: Derived Completion

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 091P. Beware of the difference between the letter 'O' and the digit '0'.