Lemma 13.33.9. Let \mathcal{D} be a triangulated category with countable direct sums. Let K \in \mathcal{D} be an object such that for every countable set of objects E_ n \in \mathcal{D} the canonical map
\bigoplus \mathop{\mathrm{Hom}}\nolimits _\mathcal {D}(K, E_ n) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _\mathcal {D}(K, \bigoplus E_ n)
is a bijection. Then, given any system L_ n of \mathcal{D} over \mathbf{N} whose derived colimit L = \text{hocolim} L_ n exists we have that
\mathop{\mathrm{colim}}\nolimits \mathop{\mathrm{Hom}}\nolimits _\mathcal {D}(K, L_ n) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _\mathcal {D}(K, L)
is a bijection.
Proof.
Consider the defining distinguished triangle
\bigoplus L_ n \to \bigoplus L_ n \to L \to \bigoplus L_ n[1]
Apply the cohomological functor \mathop{\mathrm{Hom}}\nolimits _\mathcal {D}(K, -) (see Lemma 13.4.2). By elementary considerations concerning colimits of abelian groups we get the result.
\square
Comments (0)