Lemma 13.32.8. Let $\mathcal{D}$ be a triangulated category having countable direct sums. Let $\mathcal{A}$ be an abelian category with exact colimits over $\mathbf{N}$. Let $H : \mathcal{D} \to \mathcal{A}$ be a homological functor commuting with countable direct sums. Then $H(\text{hocolim} K_ n) = \mathop{\mathrm{colim}}\nolimits H(K_ n)$ for any system of objects of $\mathcal{D}$.

Proof. Write $K = \text{hocolim} K_ n$. Apply $H$ to the defining distinguished triangle to get

$\bigoplus H(K_ n) \to \bigoplus H(K_ n) \to H(K) \to \bigoplus H(K_ n) \to \bigoplus H(K_ n)$

where the first map is given by $1 - H(f_ n)$ and the last map is given by $1 - H(f_ n)$. Apply Lemma 13.32.6 to see that this proves the lemma. $\square$

Comment #4346 by David Loeffler on

trivial typo: "be homological functor" --> "be a homological functor"

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).