The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

13.31 Derived colimits

In a triangulated category there is a notion of derived colimit.

Definition 13.31.1. Let $\mathcal{D}$ be a triangulated category. Let $(K_ n, f_ n)$ be a system of objects of $\mathcal{D}$. We say an object $K$ is a derived colimit, or a homotopy colimit of the system $(K_ n)$ if the direct sum $\bigoplus K_ n$ exists and there is a distinguished triangle

\[ \bigoplus K_ n \to \bigoplus K_ n \to K \to \bigoplus K_ n[1] \]

where the map $\bigoplus K_ n \to \bigoplus K_ n$ is given by $1 - f_ n$ in degree $n$. If this is the case, then we sometimes indicate this by the notation $K = \text{hocolim} K_ n$.

By TR3 a derived colimit, if it exists, is unique up to (non-unique) isomorphism. Moreover, by TR1 a derived colimit of $K_ n$ exists as soon as $\bigoplus K_ n$ exists. The derived category $D(\textit{Ab})$ of the category of abelian groups is an example of a triangulated category where all homotopy colimits exist.

The nonuniqueness makes it hard to pin down the derived colimit. In More on Algebra, Lemma 15.77.4 the reader finds an exact sequence

\[ 0 \to R^1\mathop{\mathrm{lim}}\nolimits \mathop{\mathrm{Hom}}\nolimits (K_ n, L[-1]) \to \mathop{\mathrm{Hom}}\nolimits (\text{hocolim} K_ n, L) \to \mathop{\mathrm{lim}}\nolimits \mathop{\mathrm{Hom}}\nolimits (K_ n, L) \to 0 \]

describing the $\mathop{\mathrm{Hom}}\nolimits $s out of a homotopy colimit in terms of the usual $\mathop{\mathrm{Hom}}\nolimits $s.

Remark 13.31.2. Let $\mathcal{D}$ be a triangulated category. Let $(K_ n, f_ n)$ be a system of objects of $\mathcal{D}$. We may think of a derived colimit as an object $K$ of $\mathcal{D}$ endowed with morphisms $i_ n : K_ n \to K$ such that $i_{n + 1} \circ f_ n = i_ n$ and such that there exists a morphism $c : K \to \bigoplus K_ n$ with the property that

\[ \bigoplus K_ n \xrightarrow {1 - f_ n} \bigoplus K_ n \xrightarrow {i_ n} K \xrightarrow {c} \bigoplus K_ n[1] \]

is a distinguished triangle. If $(K', i'_ n, c')$ is a second derived colimit, then there exists an isomorphism $\varphi : K \to K'$ such that $\varphi \circ i_ n = i'_ n$ and $c' \circ \varphi = c$. The existence of $\varphi $ is TR3 and the fact that $\varphi $ is an isomorphism is Lemma 13.4.3.

Remark 13.31.3. Let $\mathcal{D}$ be a triangulated category. Let $(a_ n) : (K_ n, f_ n) \to (L_ n, g_ n)$ be a morphism of systems of objects of $\mathcal{D}$. Let $(K, i_ n, c)$ be a derived colimit of the first system and let $(L, j_ n, d)$ be a derived colimit of the second system with notation as in Remark 13.31.2. Then there exists a morphism $a : K \to L$ such that $a \circ i_ n = j_ n$ and $d \circ a = (a_ n[1]) \circ c$. This follows from TR3 applied to the defining distinguished triangles.

Lemma 13.31.4. Let $\mathcal{D}$ be a triangulated category. Let $(K_ n, f_ n)$ be a system of objects of $\mathcal{D}$. Let $n_1 < n_2 < n_3 < \ldots $ be a sequence of integers. Assume $\bigoplus K_ n$ and $\bigoplus K_{n_ i}$ exist. Then there exists an isomorphism $\text{hocolim} K_{n_ i} \to \text{hocolim} K_ n$ such that

\[ \xymatrix{ K_{n_ i} \ar[r] \ar[d]_{\text{id}} & \text{hocolim} K_{n_ i} \ar[d] \\ K_{n_ i} \ar[r] & \text{hocolim} K_ n } \]

commutes for all $i$.

Proof. Let $g_ i : K_{n_ i} \to K_{n_{i + 1}}$ be the composition $f_{n_{i + 1} - 1} \circ \ldots \circ f_{n_ i}$. We construct commutative diagrams

\[ \vcenter { \xymatrix{ \bigoplus \nolimits _ i K_{n_ i} \ar[r]_{1 - g_ i} \ar[d]_ b & \bigoplus \nolimits _ i K_{n_ i} \ar[d]^ a \\ \bigoplus \nolimits _ n K_ n \ar[r]^{1 - f_ n} & \bigoplus \nolimits _ n K_ n } } \quad \text{and}\quad \vcenter { \xymatrix{ \bigoplus \nolimits _ n K_ n \ar[r]_{1 - f_ n} \ar[d]_ d & \bigoplus \nolimits _ n K_ n \ar[d]^ c \\ \bigoplus \nolimits _ i K_{n_ i} \ar[r]^{1 - g_ i} & \bigoplus \nolimits _ i K_{n_ i} } } \]

as follows. Let $a_ i = a|_{K_{n_ i}}$ be the inclusion of $K_{n_ i}$ into the direct sum. In other words, $a$ is the natural inclusion. Let $b_ i = b|_{K_{n_ i}}$ be the map

\[ K_{n_ i} \xrightarrow {1,\ f_{n_ i},\ f_{n_ i + 1} \circ f_{n_ i}, \ \ldots ,\ f_{n_{i + 1} - 2} \circ \ldots \circ f_{n_ i}} K_{n_ i} \oplus K_{n_ i + 1} \oplus \ldots \oplus K_{n_{i + 1} - 1} \]

If $n_{i - 1} < j \leq n_ i$, then we let $c_ j = c|_{K_ j}$ be the map

\[ K_ j \xrightarrow {f_{n_ i - 1} \circ \ldots \circ f_ j} K_{n_ i} \]

We let $d_ j = d|_{K_ j}$ be zero if $j \not= n_ i$ for any $i$ and we let $d_{n_ i}$ be the natural inclusion of $K_{n_ i}$ into the direct sum. In other words, $d$ is the natural projection. By TR3 these diagrams define morphisms

\[ \varphi : \text{hocolim} K_{n_ i} \to \text{hocolim} K_ n \quad \text{and}\quad \psi : \text{hocolim} K_ n \to \text{hocolim} K_{n_ i} \]

Since $c \circ a$ and $d \circ b$ are the identity maps we see that $\varphi \circ \psi $ is an isomorphism by Lemma 13.4.3. The other way around we get the morphisms $a \circ c$ and $b \circ d$. Consider the morphism $h = (h_ j) : \bigoplus K_ n \to \bigoplus K_ n$ given by the rule: for $n_{i - 1} < j < n_ i$ we set

\[ h_ j : K_ j \xrightarrow {1,\ f_ j,\ f_{j + 1} \circ f_ j, \ \ldots ,\ f_{n_ i - 1} \circ \ldots \circ f_ j} K_ j \oplus \ldots \oplus K_{n_ i} \]

Then the reader verifies that $(1 - f) \circ h = \text{id} - a \circ c$ and $h \circ (1 - f) = \text{id} - b \circ d$. This means that $\text{id} - \psi \circ \varphi $ has square zero by Lemma 13.4.5 (small argument omitted). In other words, $\psi \circ \varphi $ differs from the identity by a nilpotent endomorphism, hence is an isomorphism. Thus $\varphi $ and $\psi $ are isomorphisms as desired. $\square$

Lemma 13.31.5. Let $\mathcal{A}$ be an abelian category. If $\mathcal{A}$ has exact countable direct sums, then $D(\mathcal{A})$ has countable direct sums. In fact given a collection of complexes $K_ i^\bullet $ indexed by a countable index set $I$ the termwise direct sum $\bigoplus K_ i^\bullet $ is the direct sum of $K_ i^\bullet $ in $D(\mathcal{A})$.

Proof. Let $L^\bullet $ be a complex. Suppose given maps $\alpha _ i : K_ i^\bullet \to L^\bullet $ in $D(\mathcal{A})$. This means there exist quasi-isomorphisms $s_ i : M_ i^\bullet \to K_ i^\bullet $ of complexes and maps of complexes $f_ i : M_ i^\bullet \to L^\bullet $ such that $\alpha _ i = f_ is_ i^{-1}$. By assumption the map of complexes

\[ s : \bigoplus M_ i^\bullet \longrightarrow \bigoplus K_ i^\bullet \]

is a quasi-isomorphism. Hence setting $f = \bigoplus f_ i$ we see that $\alpha = fs^{-1}$ is a map in $D(\mathcal{A})$ whose composition with the coprojection $K_ i^\bullet \to \bigoplus K_ i^\bullet $ is $\alpha _ i$. We omit the verification that $\alpha $ is unique. $\square$

Lemma 13.31.6. Let $\mathcal{A}$ be an abelian category. Assume colimits over $\mathbf{N}$ exist and are exact. Then countable direct sums exists and are exact. Moreover, if $(A_ n, f_ n)$ is a system over $\mathbf{N}$, then there is a short exact sequence

\[ 0 \to \bigoplus A_ n \to \bigoplus A_ n \to \mathop{\mathrm{colim}}\nolimits A_ n \to 0 \]

where the first map in degree $n$ is given by $1 - f_ n$.

Proof. The first statement follows from $\bigoplus A_ n = \mathop{\mathrm{colim}}\nolimits (A_1 \oplus \ldots \oplus A_ n)$. For the second, note that for each $n$ we have the short exact sequence

\[ 0 \to A_1 \oplus \ldots \oplus A_{n - 1} \to A_1 \oplus \ldots \oplus A_ n \to A_ n \to 0 \]

where the first map is given by the maps $1 - f_ i$ and the second map is the sum of the transition maps. Take the colimit to get the sequence of the lemma. $\square$

Lemma 13.31.7. Let $\mathcal{A}$ be an abelian category. Let $L_ n^\bullet $ be a system of complexes of $\mathcal{A}$. Assume colimits over $\mathbf{N}$ exist and are exact in $\mathcal{A}$. Then the termwise colimit $L^\bullet = \mathop{\mathrm{colim}}\nolimits L_ n^\bullet $ is a homotopy colimit of the system in $D(\mathcal{A})$.

Proof. We have an exact sequence of complexes

\[ 0 \to \bigoplus L_ n^\bullet \to \bigoplus L_ n^\bullet \to L^\bullet \to 0 \]

by Lemma 13.31.6. The direct sums are direct sums in $D(\mathcal{A})$ by Lemma 13.31.5. Thus the result follows from the definition of derived colimits in Definition 13.31.1 and the fact that a short exact sequence of complexes gives a distinguished triangle (Lemma 13.12.1). $\square$

Lemma 13.31.8. Let $\mathcal{D}$ be a triangulated category having countable direct sums. Let $\mathcal{A}$ be an abelian category with exact colimits over $\mathbf{N}$. Let $H : \mathcal{D} \to \mathcal{A}$ be homological functor commuting with countable direct sums. Then $H(\text{hocolim} K_ n) = \mathop{\mathrm{colim}}\nolimits H(K_ n)$ for any system of objects of $\mathcal{D}$.

Proof. Write $K = \text{hocolim} K_ n$. Apply $H$ to the defining distinguished triangle to get

\[ \bigoplus H(K_ n) \to \bigoplus H(K_ n) \to H(K) \to \bigoplus H(K_ n[1]) \to \bigoplus H(K_ n[1]) \]

where the first map is given by $1 - H(f_ n)$ and the last map is given by $1 - H(f_ n[1])$. Apply Lemma 13.31.6 to see that this proves the lemma. $\square$

The following lemma tells us that taking maps out of a compact object (to be defined later) commutes with derived colimits.

Lemma 13.31.9. Let $\mathcal{D}$ be a triangulated category with countable direct sums. Let $K \in \mathcal{D}$ be an object such that for every countable set of objects $E_ n \in \mathcal{D}$ the canonical map

\[ \bigoplus \mathop{\mathrm{Hom}}\nolimits _\mathcal {D}(K, E_ n) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _\mathcal {D}(K, \bigoplus E_ n) \]

is a bijection. Then, given any system $L_ n$ of $\mathcal{D}$ over $\mathbf{N}$ whose derived colimit $L = \text{hocolim} L_ n$ exists we have that

\[ \mathop{\mathrm{colim}}\nolimits \mathop{\mathrm{Hom}}\nolimits _\mathcal {D}(K, L_ n) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _\mathcal {D}(K, L) \]

is a bijection.

Proof. Consider the defining distinguished triangle

\[ \bigoplus L_ n \to \bigoplus L_ n \to L \to \bigoplus L_ n[1] \]

Apply the cohomological functor $\mathop{\mathrm{Hom}}\nolimits _\mathcal {D}(K, -)$ (see Lemma 13.4.2). By elementary considerations concerning colimits of abelian groups we get the result. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0A5K. Beware of the difference between the letter 'O' and the digit '0'.