Lemma 59.71.4. Let $X$ be a scheme. Checking constructibility of a sheaf of sets, abelian groups, $\Lambda $-modules (with $\Lambda $ Noetherian) can be done Zariski locally on $X$.

**Proof.**
The statement means if $X = \bigcup U_ i$ is an open covering such that $\mathcal{F}|_{U_ i}$ is constructible, then $\mathcal{F}$ is constructible. If $U \subset X$ is affine open, then $U = \bigcup U \cap U_ i$ and $\mathcal{F}|_{U \cap U_ i}$ is constructible (it is trivial that the restriction of a constructible sheaf to an open is constructible). It follows from Lemma 59.71.2 that $\mathcal{F}|_ U$ is constructible, i.e., a suitable partition of $U$ exists.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: