The Stacks project

Lemma 59.71.8. Let $X$ be a quasi-compact and quasi-separated scheme. Let $\mathcal{F} = \mathop{\mathrm{colim}}\nolimits _{i \in I} \mathcal{F}_ i$ be a filtered colimit of sheaves of sets, abelian sheaves, or sheaves of modules.

  1. If $\mathcal{F}$ and $\mathcal{F}_ i$ are constructible sheaves of sets, then the ind-object $\mathcal{F}_ i$ is essentially constant with value $\mathcal{F}$.

  2. If $\mathcal{F}$ and $\mathcal{F}_ i$ are constructible sheaves of abelian groups, then the ind-object $\mathcal{F}_ i$ is essentially constant with value $\mathcal{F}$.

  3. Let $\Lambda $ be a Noetherian ring. If $\mathcal{F}$ and $\mathcal{F}_ i$ are constructible sheaves of $\Lambda $-modules, then the ind-object $\mathcal{F}_ i$ is essentially constant with value $\mathcal{F}$.

Proof. Proof of (1). We will use without further mention that finite limits and colimits of constructible sheaves are constructible (Lemma 59.64.6). For each $i$ let $T_ i \subset X$ be the set of points $x \in X$ where $\mathcal{F}_{i, \overline{x}} \to \mathcal{F}_{\overline{x}}$ is not surjective. Because $\mathcal{F}_ i$ and $\mathcal{F}$ are constructible $T_ i$ is a constructible subset of $X$ (Lemma 59.71.7). Since the stalks of $\mathcal{F}$ are finite and since $\mathcal{F} = \mathop{\mathrm{colim}}\nolimits _{i \in I} \mathcal{F}_ i$ we see that for all $x \in X$ we have $x \not\in T_ i$ for $i$ large enough. Since $X$ is a spectral space by Properties, Lemma 28.2.4 the constructible topology on $X$ is quasi-compact by Topology, Lemma 5.23.2. Thus $T_ i = \emptyset $ for $i$ large enough. Thus $\mathcal{F}_ i \to \mathcal{F}$ is surjective for $i$ large enough. Assume now that $\mathcal{F}_ i \to \mathcal{F}$ is surjective for all $i$. Choose $i \in I$. For $i' \geq i$ denote $S_{i'} \subset X$ the set of points $x$ such that the number of elements in $\mathop{\mathrm{Im}}(\mathcal{F}_{i, \overline{x}} \to \mathcal{F}_{\overline{x}})$ is equal to the number of elements in $\mathop{\mathrm{Im}}(\mathcal{F}_{i, \overline{x}} \to \mathcal{F}_{i', \overline{x}})$. Because $\mathcal{F}_ i$, $\mathcal{F}_{i'}$ and $\mathcal{F}$ are constructible $S_{i'}$ is a constructible subset of $X$ (details omitted; hint: use Lemma 59.71.7). Since the stalks of $\mathcal{F}_ i$ and $\mathcal{F}$ are finite and since $\mathcal{F} = \mathop{\mathrm{colim}}\nolimits _{i' \geq i} \mathcal{F}_{i'}$ we see that for all $x \in X$ we have $x \not\in S_{i'}$ for $i'$ large enough. By the same argument as above we can find a large $i'$ such that $S_{i'} = \emptyset $. Thus $\mathcal{F}_ i \to \mathcal{F}_{i'}$ factors through $\mathcal{F}$ as desired.

Proof of (2). Observe that a constructible abelian sheaf is a constructible sheaf of sets. Thus case (2) follows from (1).

Proof of (3). We will use without further mention that the category of constructible sheaves of $\Lambda $-modules is abelian (Lemma 59.64.6). For each $i$ let $\mathcal{Q}_ i$ be the cokernel of the map $\mathcal{F}_ i \to \mathcal{F}$. The support $T_ i$ of $\mathcal{Q}_ i$ is a constructible subset of $X$ as $\mathcal{Q}_ i$ is constructible (Lemma 59.71.7). Since the stalks of $\mathcal{F}$ are finite $\Lambda $-modules and since $\mathcal{F} = \mathop{\mathrm{colim}}\nolimits _{i \in I} \mathcal{F}_ i$ we see that for all $x \in X$ we have $x \not\in T_ i$ for $i$ large enough. Since $X$ is a spectral space by Properties, Lemma 28.2.4 the constructible topology on $X$ is quasi-compact by Topology, Lemma 5.23.2. Thus $T_ i = \emptyset $ for $i$ large enough. This proves the first assertion. For the second, assume now that $\mathcal{F}_ i \to \mathcal{F}$ is surjective for all $i$. Choose $i \in I$. For $i' \geq i$ denote $\mathcal{K}_{i'}$ the image of $\mathop{\mathrm{Ker}}(\mathcal{F}_ i \to \mathcal{F})$ in $\mathcal{F}_{i'}$. The support $S_{i'}$ of $\mathcal{K}_{i'}$ is a constructible subset of $X$ as $\mathcal{K}_{i'}$ is constructible. Since the stalks of $\mathop{\mathrm{Ker}}(\mathcal{F}_ i \to \mathcal{F})$ are finite $\Lambda $-modules and since $\mathcal{F} = \mathop{\mathrm{colim}}\nolimits _{i' \geq i} \mathcal{F}_{i'}$ we see that for all $x \in X$ we have $x \not\in S_{i'}$ for $i'$ large enough. By the same argument as above we can find a large $i'$ such that $S_{i'} = \emptyset $. Thus $\mathcal{F}_ i \to \mathcal{F}_{i'}$ factors through $\mathcal{F}$ as desired. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 59.71: Constructible sheaves

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 095P. Beware of the difference between the letter 'O' and the digit '0'.