Lemma 61.18.1. Let $S$ be a scheme. The pro-étale sites $\mathit{Sch}_{pro\text{-}\acute{e}tale}$, $S_{pro\text{-}\acute{e}tale}$, $(\mathit{Sch}/S)_{pro\text{-}\acute{e}tale}$, $S_{affine, {pro\text{-}\acute{e}tale}}$, and $(\textit{Aff}/S)_{pro\text{-}\acute{e}tale}$ have enough points.

Proof. The big pro-étale topos of $S$ is equivalent to the topos defined by $(\textit{Aff}/S)_{pro\text{-}\acute{e}tale}$, see Lemma 61.12.11. The topos of sheaves on $S_{pro\text{-}\acute{e}tale}$ is equivalent to the topos associated to $S_{affine, {pro\text{-}\acute{e}tale}}$, see Lemma 61.12.20. The result for the sites $(\textit{Aff}/S)_{pro\text{-}\acute{e}tale}$ and $S_{affine, {pro\text{-}\acute{e}tale}}$ follows immediately from Deligne's result Sites, Lemma 7.39.4. The case $\mathit{Sch}_{pro\text{-}\acute{e}tale}$ is handled because it is equal to $(\mathit{Sch}/\mathop{\mathrm{Spec}}(\mathbf{Z}))_{pro\text{-}\acute{e}tale}$. $\square$

There are also:

• 7 comment(s) on Section 61.18: Points of the pro-étale site

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).