The Stacks project

Lemma 7.39.4. Let $\mathcal{C}$ be a site. Let $I$ be a set and for $i \in I$ let $U_ i$ be an object of $\mathcal{C}$ such that

  1. $\coprod h_{U_ i}$ surjects onto the final object of $\mathop{\mathit{Sh}}\nolimits (\mathcal{C})$, and

  2. $\mathcal{C}/U_ i$ satisfies the hypotheses of Proposition 7.39.3.

Then $\mathcal{C}$ has enough points.

Proof. By assumption (2) and the proposition $\mathcal{C}/U_ i$ has enough points. The points of $\mathcal{C}/U_ i$ give points of $\mathcal{C}$ via the procedure of Lemma 7.34.2. Thus it suffices to show: if $\phi : \mathcal{F} \to \mathcal{G}$ is a map of sheaves on $\mathcal{C}$ such that $\phi |_{\mathcal{C}/U_ i}$ is an isomorphism for all $i$, then $\phi $ is an isomorphism. By assumption (1) for every object $W$ of $\mathcal{C}$ there is a covering $\{ W_ j \to W\} _{j \in J}$ such that for $j \in J$ there is an $i \in I$ and a morphism $f_ j : W_ j \to U_ i$. Then the maps $\mathcal{F}(W_ j) \to \mathcal{G}(W_ j)$ are bijective and similarly for $\mathcal{F}(W_ j \times _ W W_{j'}) \to \mathcal{G}(W_ j \times _ W W_{j'})$. The sheaf condition tells us that $\mathcal{F}(W) \to \mathcal{G}(W)$ is bijective as desired. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0DW0. Beware of the difference between the letter 'O' and the digit '0'.