Lemma 61.6.8. Let $A$ be a ring. There exists a faithfully flat, ind-Zariski ring map $A \to B$ such that $B$ satisfies the equivalent conditions of Lemma 61.6.7.
Proof. We first apply Lemma 61.5.3 to see that we may assume that $\mathop{\mathrm{Spec}}(A)$ is w-local. Choose an extremally disconnected space $T$ and a surjective continuous map $T \to \pi _0(\mathop{\mathrm{Spec}}(A))$, see Topology, Lemma 5.26.9. Note that $T$ is profinite. Apply Lemma 61.6.2 to find an ind-Zariski ring map $A \to B$ such that $\pi _0(\mathop{\mathrm{Spec}}(B)) \to \pi _0(\mathop{\mathrm{Spec}}(A))$ realizes $T \to \pi _0(\mathop{\mathrm{Spec}}(A))$ and such that
is cartesian in the category of topological spaces. Note that $\mathop{\mathrm{Spec}}(B)$ is w-local, that $\mathop{\mathrm{Spec}}(B) \to \mathop{\mathrm{Spec}}(A)$ is w-local, and that the set of closed points of $\mathop{\mathrm{Spec}}(B)$ is the inverse image of the set of closed points of $\mathop{\mathrm{Spec}}(A)$, see Lemma 61.2.5. Thus condition (3) of Lemma 61.6.7 holds for $B$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)