Lemma 61.28.3. Let X be a weakly contractible affine scheme. Let \Lambda be a Noetherian ring and I \subset \Lambda be an ideal. Let \mathcal{F} be a sheaf of \Lambda -modules on X_{pro\text{-}\acute{e}tale} such that
\mathcal{F} = \mathop{\mathrm{lim}}\nolimits \mathcal{F}/I^ n\mathcal{F},
\mathcal{F}/I^ n\mathcal{F} is a constant sheaf of \Lambda /I^ n-modules,
\mathcal{F}/I\mathcal{F} is of finite type.
Then \mathcal{F} \cong \underline{M}^\wedge where M is a finite \Lambda ^\wedge -module.
Proof.
Pick a \Lambda /I^ n-module M_ n such that \mathcal{F}/I^ n\mathcal{F} \cong \underline{M_ n}. Since we have the surjections \mathcal{F}/I^{n + 1}\mathcal{F} \to \mathcal{F}/I^ n\mathcal{F} we conclude that there exist surjections M_{n + 1} \to M_ n inducing isomorphisms M_{n + 1}/I^ nM_{n + 1} \to M_ n. Fix a choice of such surjections and set M = \mathop{\mathrm{lim}}\nolimits M_ n. Then M is an I-adically complete \Lambda -module with M/I^ nM = M_ n, see Algebra, Lemma 10.98.2. Since M_1 is a finite type \Lambda -module (Modules on Sites, Lemma 18.42.5) we see that M is a finite \Lambda ^\wedge -module. Consider the sheaves
\mathcal{I}_ n = \mathit{Isom}(\underline{M_ n}, \mathcal{F}/I^ n\mathcal{F})
on X_{pro\text{-}\acute{e}tale}. Modding out by I^ n defines a transition map
\mathcal{I}_{n + 1} \longrightarrow \mathcal{I}_ n
By our choice of M_ n the sheaf \mathcal{I}_ n is a torsor under
\mathit{Isom}(\underline{M_ n}, \underline{M_ n}) = \underline{\text{Isom}_\Lambda (M_ n, M_ n)}
(Modules on Sites, Lemma 18.43.4) since \mathcal{F}/I^ n\mathcal{F} is (étale) locally isomorphic to \underline{M_ n}. It follows from More on Algebra, Lemma 15.100.4 that the system of sheaves (\mathcal{I}_ n) is Mittag-Leffler. For each n let \mathcal{I}'_ n \subset \mathcal{I}_ n be the image of \mathcal{I}_ N \to \mathcal{I}_ n for all N \gg n. Then
\ldots \to \mathcal{I}'_3 \to \mathcal{I}'_2 \to \mathcal{I}'_1 \to *
is a sequence of sheaves of sets on X_{pro\text{-}\acute{e}tale} with surjective transition maps. Since *(X) is a singleton (not empty) and since evaluating at X transforms surjective maps of sheaves of sets into surjections of sets, we can pick s \in \mathop{\mathrm{lim}}\nolimits \mathcal{I}'_ n(X). The sections define isomorphisms \underline{M}^\wedge \to \mathop{\mathrm{lim}}\nolimits \mathcal{F}/I^ n\mathcal{F} = \mathcal{F} and the proof is done.
\square
Comments (0)
There are also: