The Stacks project

Example 92.5.9. Let $A \to B$ be a ring map. In this example we will construct an “explicit” resolution $P_\bullet $ of $B$ over $A$ of length $2$. To do this we follow the procedure of the proof of Proposition 92.5.2, see also the discussion in Remark 92.5.5.

We choose a surjection $P_0 = A[u_ i] \to B$ where $u_ i$ is a set of variables. Choose generators $f_ t \in P_0$, $t \in T$ of the ideal $\mathop{\mathrm{Ker}}(P_0 \to B)$. We choose $P_1 = A[u_ i, x_ t]$ with face maps $d_0$ and $d_1$ the unique $A$-algebra maps with $d_ j(u_ i) = u_ i$ and $d_0(x_ t) = 0$ and $d_1(x_ t) = f_ t$. The map $s_0 : P_0 \to P_1$ is the unique $A$-algebra map with $s_0(u_ i) = u_ i$. It is clear that

\[ P_1 \xrightarrow {d_0 - d_1} P_0 \to B \to 0 \]

is exact, in particular the map $(d_0, d_1) : P_1 \to P_0 \times _ B P_0$ is surjective. Thus, if $P_\bullet $ denotes the $1$-truncated simplicial $A$-algebra given by $P_0$, $P_1$, $d_0$, $d_1$, and $s_0$, then the augmentation $\text{cosk}_1(P_\bullet ) \to B$ is a trivial Kan fibration. The next step of the procedure in the proof of Proposition 92.5.2 is to choose a polynomial algebra $P_2$ and a surjection

\[ P_2 \longrightarrow \text{cosk}_1(P_\bullet )_2 \]

Recall that

\[ \text{cosk}_1(P_\bullet )_2 = \{ (g_0, g_1, g_2) \in P_1^3 \mid d_0(g_0) = d_0(g_1), d_1(g_0) = d_0(g_2), d_1(g_1) = d_1(g_2)\} \]

Thinking of $g_ i \in P_1$ as a polynomial in $x_ t$ the conditions are

\[ g_0(0) = g_1(0),\quad g_0(f_ t) = g_2(0),\quad g_1(f_ t) = g_2(f_ t) \]

Thus $\text{cosk}_1(P_\bullet )_2$ contains the elements $y_ t = (x_ t, x_ t, f_ t)$ and $z_ t = (0, x_ t, x_ t)$. Every element $G$ in $\text{cosk}_1(P_\bullet )_2$ is of the form $G = H + (0, 0, g)$ where $H$ is in the image of $A[u_ i, y_ t, z_ t] \to \text{cosk}_1(P_\bullet )_2$. Here $g \in P_1$ is a polynomial with vanishing constant term such that $g(f_ t) = 0$ in $P_0$. Observe that

  1. $g = x_ t x_{t'} - f_ t x_{t'}$ and

  2. $g = \sum r_ t x_ t$ with $r_ t \in P_0$ if $\sum r_ t f_ t = 0$ in $P_0$

are elements of $P_1$ of the desired form. Let

\[ Rel = \mathop{\mathrm{Ker}}(\bigoplus \nolimits _{t \in T} P_0 \longrightarrow P_0),\quad (r_ t) \longmapsto \sum r_ tf_ t \]

We set $P_2 = A[u_ i, y_ t, z_ t, v_ r, w_{t, t'}]$ where $r = (r_ t) \in Rel$, with map

\[ P_2 \longrightarrow \text{cosk}_1(P_\bullet )_2 \]

given by $y_ t \mapsto (x_ t, x_ t, f_ t)$, $z_ t \mapsto (0, x_ t, x_ t)$, $v_ r \mapsto (0, 0, \sum r_ t x_ t)$, and $w_{t, t'} \mapsto (0, 0, x_ t x_{t'} - f_ t x_{t'})$. A calculation (omitted) shows that this map is surjective. Our choice of the map displayed above determines the maps $d_0, d_1, d_2 : P_2 \to P_1$. Finally, the procedure in the proof of Proposition 92.5.2 tells us to choose the maps $s_0, s_1 : P_1 \to P_2$ lifting the two maps $P_1 \to \text{cosk}_1(P_\bullet )_2$. It is clear that we can take $s_ i$ to be the unique $A$-algebra maps determined by $s_0(x_ t) = y_ t$ and $s_1(x_ t) = z_ t$.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09D4. Beware of the difference between the letter 'O' and the digit '0'.