The Stacks project

Remark 15.114.1. Let $A \to B$ be an extension of discrete valuation rings with fraction fields $K \subset L$. Let $K_1/K$ be a finite extension of fields. Let $A_1 \subset K_1$ be the integral closure of $A$ in $K_1$. On the other hand, let $L_1 = (L \otimes _ K K_1)_{red}$. Then $L_1$ is a nonempty finite product of finite field extensions of $L$. Let $B_1$ be the integral closure of $B$ in $L_1$. We obtain compatible commutative diagrams

\[ \vcenter { \xymatrix{ L \ar[r] & L_1 \\ K \ar[u] \ar[r] & K_1 \ar[u] } } \quad \text{and}\quad \vcenter { \xymatrix{ B \ar[r] & B_1 \\ A \ar[u] \ar[r] & A_1 \ar[u] } } \]

In this situation we have the following

  1. By Algebra, Lemma 10.120.18 the ring $A_1$ is a Dedekind domain and $B_1$ is a finite product of Dedekind domains.

  2. Note that $L \otimes _ K K_1 = (B \otimes _ A A_1)_\pi $ where $\pi \in A$ is a uniformizer and that $\pi $ is a nonzerodivisor on $B \otimes _ A A_1$. Thus the ring map $B \otimes _ A A_1 \to B_1$ is integral with kernel consisting of nilpotent elements. Hence $\mathop{\mathrm{Spec}}(B_1) \to \mathop{\mathrm{Spec}}(B \otimes _ A A_1)$ is surjective on spectra (Algebra, Lemma 10.36.17). The map $\mathop{\mathrm{Spec}}(B \otimes _ A A_1) \to \mathop{\mathrm{Spec}}(A_1)$ is surjective as $A_1/\mathfrak m_ A A_1 \to B/\mathfrak m_ AB \otimes _{\kappa _ A} A_1/\mathfrak m_ A A_1$ is an injective ring map with $A_1/\mathfrak m_ A A_1$ Artinian. We conclude that $\mathop{\mathrm{Spec}}(B_1) \to \mathop{\mathrm{Spec}}(A_1)$ is surjective.

  3. Let $\mathfrak m_ i$, $i = 1, \ldots n$ with $n \geq 1$ be the maximal ideals of $A_1$. For each $i = 1, \ldots , n$ let $\mathfrak m_{ij}$, $j = 1, \ldots , m_ i$ with $m_ i \geq 1$ be the maximal ideals of $B_1$ lying over $\mathfrak m_ i$. We obtain diagrams

    \[ \xymatrix{ B \ar[r] & (B_1)_{\mathfrak m_{ij}} \\ A \ar[u] \ar[r] & (A_1)_{\mathfrak m_ i} \ar[u] } \]

    of extensions of discrete valuation rings.

  4. If $A$ is henselian (for example complete), then $A_1$ is a discrete valuation ring, i.e., $n = 1$. Namely, $A_1$ is a union of finite extensions of $A$ which are domains, hence local by Algebra, Lemma 10.153.4.

  5. If $B$ is henselian (for example complete), then $B_1$ is a product of discrete valuation rings, i.e., $m_ i = 1$ for $i = 1, \ldots , n$.

  6. If $K \subset K_1$ is purely inseparable, then $A_1$ and $B_1$ are both discrete valuation rings, i.e., $n = 1$ and $m_1 = 1$. This is true because for every $b \in B_1$ a $p$-power power of $b$ is in $B$, hence $B_1$ can only have one maximal ideal.

  7. If $K \subset K_1$ is finite separable, then $L_1 = L \otimes _ K K_1$ and is a finite product of finite separable extensions too. Hence $A \subset A_1$ and $B \subset B_1$ are finite by Algebra, Lemma 10.161.8.

  8. If $A$ is Nagata, then $A \subset A_1$ is finite.

  9. If $B$ is Nagata, then $B \subset B_1$ is finite.

Comments (2)

Comment #7777 by Mingchen on

(6) p-power power should be p-power

There are also:

  • 2 comment(s) on Section 15.114: Abhyankar's lemma and tame ramification

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09EM. Beware of the difference between the letter 'O' and the digit '0'.