Definition 15.115.1. Let $A \to B$ be an extension of discrete valuation rings with fraction fields $K \subset L$.

We say a finite field extension $K_1/K$ is a

*weak solution for $A \subset B$*if all the extensions $(A_1)_{\mathfrak m_ i} \subset (B_1)_{\mathfrak m_{ij}}$ of Remark 15.114.1 are weakly unramified.We say a finite field extension $K_1/K$ is a

*solution for $A \subset B$*if each extension $(A_1)_{\mathfrak m_ i} \subset (B_1)_{\mathfrak m_{ij}}$ of Remark 15.114.1 is formally smooth in the $\mathfrak m_{ij}$-adic topology.

We say a solution $K_1/K$ is a *separable solution* if $K_1/K$ is separable.

## Comments (0)

There are also: