Lemma 75.15.3. Let S be a scheme. Let X be a quasi-compact and quasi-separated algebraic space over S. Let W be a quasi-compact open subspace of X. Let P be a perfect object of D(\mathcal{O}_ W). Then P is a direct summand of the restriction of a perfect object of D(\mathcal{O}_ X).
Proof. Special case of Lemma 75.15.1. \square
Comments (0)