Lemma 22.5.2. Let $(A, \text{d})$ be a differential graded algebra. Let $f, g : L \to M$ be homomorphisms of differential graded $A$-modules. Suppose given further homomorphisms $a : K \to L$, and $c : M \to N$. If $h : L \to M$ is an $A$-module map which defines a homotopy between $f$ and $g$, then $c \circ h \circ a$ defines a homotopy between $c \circ f \circ a$ and $c \circ g \circ a$.

**Proof.**
Immediate from Homology, Lemma 12.13.7.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (1)

Comment #289 by arp on

There are also: