The Stacks project

Lemma 22.9.4. Let $(A, \text{d})$ be a differential graded algebra.

  1. Given an admissible short exact sequence $0 \to K \xrightarrow {\alpha } L \to M \to 0$ of differential graded $A$-modules there exists a homotopy equivalence $C(\alpha ) \to M$ such that the diagram

    \[ \xymatrix{ K \ar[r] \ar[d] & L \ar[d] \ar[r] & C(\alpha ) \ar[r]_{-p} \ar[d] & K[1] \ar[d] \\ K \ar[r]^\alpha & L \ar[r]^\beta & M \ar[r]^\delta & K[1] } \]

    defines an isomorphism of triangles in $K(\text{Mod}_{(A, \text{d})})$.

  2. Given a morphism of complexes $f : K \to L$ there exists an isomorphism of triangles

    \[ \xymatrix{ K \ar[r] \ar[d] & \tilde L \ar[d] \ar[r] & M \ar[r]_{\delta } \ar[d] & K[1] \ar[d] \\ K \ar[r] & L \ar[r] & C(f) \ar[r]^{-p} & K[1] } \]

    where the upper triangle is the triangle associated to a admissible short exact sequence $K \to \tilde L \to M$.

Proof. Proof of (1). We have $C(\alpha ) = L \oplus K$ and we simply define $C(\alpha ) \to M$ via the projection onto $L$ followed by $\beta $. This defines a morphism of differential graded modules because the compositions $K^{n + 1} \to L^{n + 1} \to M^{n + 1}$ are zero. Choose splittings $s : M \to L$ and $\pi : L \to K$ with $\mathop{\mathrm{Ker}}(\pi ) = \mathop{\mathrm{Im}}(s)$ and set $\delta = \pi \circ \text{d}_ L \circ s$ as usual. To get a homotopy inverse we take $M \to C(\alpha )$ given by $(s , -\delta )$. This is compatible with differentials because $\delta ^ n$ can be characterized as the unique map $M^ n \to K^{n + 1}$ such that $\text{d} \circ s^ n - s^{n + 1} \circ \text{d} = \alpha \circ \delta ^ n$, see proof of Homology, Lemma 12.14.10. The composition $M \to C(f) \to M$ is the identity. The composition $C(f) \to M \to C(f)$ is equal to the morphism

\[ \left( \begin{matrix} s \circ \beta & 0 \\ -\delta \circ \beta & 0 \end{matrix} \right) \]

To see that this is homotopic to the identity map use the homotopy $h : C(\alpha ) \to C(\alpha )$ given by the matrix

\[ \left( \begin{matrix} 0 & 0 \\ \pi & 0 \end{matrix} \right) : C(\alpha ) = L \oplus K \to L \oplus K = C(\alpha ) \]

It is trivial to verify that

\[ \left( \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right) - \left( \begin{matrix} s \\ -\delta \end{matrix} \right) \left( \begin{matrix} \beta & 0 \end{matrix} \right) = \left( \begin{matrix} \text{d} & \alpha \\ 0 & -\text{d} \end{matrix} \right) \left( \begin{matrix} 0 & 0 \\ \pi & 0 \end{matrix} \right) + \left( \begin{matrix} 0 & 0 \\ \pi & 0 \end{matrix} \right) \left( \begin{matrix} \text{d} & \alpha \\ 0 & -\text{d} \end{matrix} \right) \]

To finish the proof of (1) we have to show that the morphisms $-p : C(\alpha ) \to K[1]$ (see Definition 22.6.1) and $C(\alpha ) \to M \to K[1]$ agree up to homotopy. This is clear from the above. Namely, we can use the homotopy inverse $(s, -\delta ) : M \to C(\alpha )$ and check instead that the two maps $M \to K[1]$ agree. And note that $p \circ (s, -\delta ) = -\delta $ as desired.

Proof of (2). We let $\tilde f : K \to \tilde L$, $s : L \to \tilde L$ and $\pi : L \to L$ be as in Lemma 22.7.4. By Lemmas 22.6.2 and 22.9.3 the triangles $(K, L, C(f), i, p)$ and $(K, \tilde L, C(\tilde f), \tilde i, \tilde p)$ are isomorphic. Note that we can compose isomorphisms of triangles. Thus we may replace $L$ by $\tilde L$ and $f$ by $\tilde f$. In other words we may assume that $f$ is an admissible monomorphism. In this case the result follows from part (1). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09KF. Beware of the difference between the letter 'O' and the digit '0'.