The Stacks project

Lemma 75.17.2. Let $S$ be a scheme. Let $X$ be a quasi-compact and quasi-separated algebraic space over $S$. Let $K$ be a perfect object of $D(\mathcal{O}_ X)$. Then

  1. there exist integers $a \leq b$ such that $\mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(K, L) = 0$ for $L \in D_\mathit{QCoh}(\mathcal{O}_ X)$ with $H^ i(L) = 0$ for $i \in [a, b]$, and

  2. if $L$ is bounded, then $\mathop{\mathrm{Ext}}\nolimits ^ n_{D(\mathcal{O}_ X)}(K, L)$ is zero for all but finitely many $n$.

Proof. Part (2) follows from (1) as $\mathop{\mathrm{Ext}}\nolimits ^ n_{D(\mathcal{O}_ X)}(K, L) = \mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(K, L[n])$. We prove (1). Since $K$ is perfect we have

\[ \mathop{\mathrm{Ext}}\nolimits ^ i_{D(\mathcal{O}_ X)}(K, L) = H^ i(X, K^\vee \otimes _{\mathcal{O}_ X}^\mathbf {L} L) \]

where $K^\vee $ is the “dual” perfect complex to $K$, see Cohomology on Sites, Lemma 21.48.4. Note that $P = K^\vee \otimes _{\mathcal{O}_ X}^\mathbf {L} L$ is in $D_\mathit{QCoh}(X)$ by Lemmas 75.5.6 and 75.13.6 (to see that a perfect complex has quasi-coherent cohomology sheaves). Say $K^\vee $ has tor amplitude in $[a, b]$. Then the spectral sequence

\[ E_1^{p, q} = H^ p(K^\vee \otimes _{\mathcal{O}_ X}^\mathbf {L} H^ q(L)) \Rightarrow H^{p + q}(K^\vee \otimes _{\mathcal{O}_ X}^\mathbf {L} L) \]

shows that $H^ j(K^\vee \otimes _{\mathcal{O}_ X}^\mathbf {L} L)$ is zero if $H^ q(L) = 0$ for $q \in [j - b, j - a]$. Let $N$ be the integer $\max (d_ p + p)$ of Cohomology of Spaces, Lemma 69.7.3. Then $H^0(X, K^\vee \otimes _{\mathcal{O}_ X}^\mathbf {L} L)$ vanishes if the cohomology sheaves

\[ H^{-N}(K^\vee \otimes _{\mathcal{O}_ X}^\mathbf {L} L), \ H^{-N + 1}(K^\vee \otimes _{\mathcal{O}_ X}^\mathbf {L} L), \ \ldots , \ H^0(K^\vee \otimes _{\mathcal{O}_ X}^\mathbf {L} L) \]

are zero. Namely, by the lemma cited and Lemma 75.5.8, we have

\[ H^0(X, K^\vee \otimes _{\mathcal{O}_ X}^\mathbf {L} L) = H^0(X, \tau _{\geq -N}(K^\vee \otimes _{\mathcal{O}_ X}^\mathbf {L} L)) \]

and by the vanishing of cohomology sheaves, this is equal to $H^0(X, \tau _{\geq 1}(K^\vee \otimes _{\mathcal{O}_ X}^\mathbf {L} L))$ which is zero by Derived Categories, Lemma 13.16.1. It follows that $\mathop{\mathrm{Hom}}\nolimits _{D(\mathcal{O}_ X)}(K, L)$ is zero if $H^ i(L) = 0$ for $i \in [-b - N, -a]$. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 09MB. Beware of the difference between the letter 'O' and the digit '0'.